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ON GOLDBACH'S CONJECTURE IN ARITHMETIC PROGRESSIONS
C. BAUER

Communicaled by I. Z. Ruzse

Abstract

Let N be any odd positive integer and r and b; positive integers with (r,bi) =1,
i€ {1,2,3)}. We prove that if N = by -+ by +ba (modr), then there exists a constant §>0
such that for any sufliciently large N and any r < N? the equation

N=p1+p2+p3

has prime solutions p1,ps and p3, which satisfy p: = bi{mod ),

1. Introduction and statement of results

The Goldbach—-Vinogradov theorem states that every sufficiently large
odd positive integer can be written as the sum of three primes. It also gives
an asymptotic formula for the number of possible representations. Various
generalizations of this problem have been investigated. Ayoub [1] proved the
following unconditional result, which had been anticipated by Rademacher
[8] assuming the Great Riemann Hypothesis: If v is a fixed positive integer,
b; (i==1,2,3) integers with (by,r)==1 and J(N;r,b1,ba,bs) is the number of
solutions of the equation

N =pi +p2+ps,
(1.1)

pj = b;{modr),

then

2

JIN; 7 by, bo, b)) =0 (N r) =5
(N3, by, by 3) =0 ?)210g3'N

(1+0(1)),
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2 C. BAUER

where for odd N = by + bs + by (mod r),

. C(r —l - 1)* -1
(12)  o(N;r) = ()H fl lH” p“_pl&jl )

p}l PN
wl
X H (1 |- ! )
—_ 3 )
oy -1

where all p> 2, C(r) =2 for odd » and C{r) =8 for even ». From Ayouly’s
article it is clear that his approach can also be used to prove (1.2) for all
r <log® N for an arbitrary A > 0. Making use of the Siegel-Walfisz theorem,
Ayoub’s method cannot be applied to an r as large as r = N9, Results for
such larger moduli only exist so far for almost all moduli ». Wolke [9] first
gave a proof for almost all prime modulir S N . This was improved by Liu
and Zhan [4], who proved a similar result for almost all moduli r in a range
even larger than that of Wolke. In this paper we will further contribute to
this problem by showing the following theorem:

THEOREM. There exists a computable constant 6* > 0 such that any suf-
ficiently large odd integer N which satisfies N = by + by + by (mod ) can be
represented as in (1.1) for any

(1.3) r S NY

To prove this theorem we apply a modification of Montgomery’s and
Vaughan's technique [7] established by Liu and Tsang in [6].
2. Notation and some preliminary results

For the proof of Theorem 1 we shall introduce the following notation.
Let » be a fixed positive integer and ¢ any positive integer. We set

k ke
: ; B4
"'ZT*HP?: q:q*Hpr,; H
=1

i=1

with ( oy H pt) =1 and (¢*, ") =1. Define

k
hig= H P& hog = H Pi

oy <3 (\12(3
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(and an empty product equal to 1) such that

(2.1) ( - ):1, haghig = hq,

'
where
(2.2} hg={r,q).
Then for q = quqp with (¢, q) =1
(2.3) hig = hig, Rig,

for 1 € {1,2}. For three integers by,by and by which satisfy (b;,7) =1 and
three characters x; mod i, gilg, 1€ {1,2,3} define

Si(@)= Y logpelap),  Skia)= > xiplogpe(ap),

%§J><N %’ CpaiV
pzb; (mod r}

q
ma
C(Xiu(f: h‘a bi>a’) = Z Xi(??l)@(*;;") H A(Q:II‘Q3J\I>X1:X2:X3) =

=l
mzhy (mod hj
(m,q)=1

M iC’( hy, b1, a)C( hgy ba, @)C( Ry, b3, a)e il
$3(q/hag) = L@ BB X @ g 02 X812 fig» 03,2/ € g /)

{a,q)=1

The expression on the right side obviously also depends on the & but we
do not indicate this dependence in the index because we will only argue for
fixed b;. Let xo,, denote the principal character modulo ¢ and set

A(Q> h'qa Na XO,q/hgq: XO,q/h.gq H XO,q/hgq) = A(Q) hq: ]\7),

(2.4) R(N)= Z log p1 log po log pa,
%— g;u?- <N
pEb;(mod r)
p1tpgtpy=N

L“—zIOgN) P:AT(S’ Q:ATP—5/4’ CI‘=PC’

where ¢ is a sufficiently small chosen, positive constant and ¢ is a large
positive constant. Let [a,b, ] denote the smallest common multiple of the
three integers @, b and c.
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It is a well-known fact (see {1]) that there is not more than one primitive
character to a modulus ¢ £ 7 for which the corresponding L-function has a
zero in the region
C1

2. - (T T =
( 5) ag<l @(l)a ltE_la e(z) ].Og’lﬂ

where ¢; is a small constant. If there is such an exceptional charvacter, it
is real and we denote it by A and its module by 7. The corresponding
exceptional zero is real, simple and unigue and we denote it by ﬁ If A
exists, the zero-free region in (2.5) is extended to (see [3])

X Yy Co ) (48]
(26) )= log T tog ((1 - 8) 10gT> '

Furthermore, it is known that

3 5 €
2.7 —_— L 1-8Z )
27) i 20ps = = log T
We want to ensure that
(2.8) 7 < pls)

if 7 exists. For this purpose it suffices that in {2.4) and (2.5) we take P =
N8/ jngtead of P = N9 and ¢1/16¢ instead of ¢y if # > P16, We also define

o (1= log T if 3 exists,
(29) l) = { 1 otherwise,
and
N N
IHa)= f elza)de, I(a)= f aPe(wa) da,
N/6 N/G
j\'f
L(a)= / e(za) }:I:L'P”id, Sy = (&, T)= Z’wﬁ“i,
N/6 [v|Er T

where ' denotes the summation over all zeros = 8+ iy of L(s,x) lying
=T
inside the region: |y| ST, % SH8E1-0(T), where ©(T) is defined as in (2.6}
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or (2.5) depending on whether or not f exists. Now we define the major
arcs M and the minor arcs m as

q
G l @ 1
M = -—mm,w+~—]
}Jp L:J] [q @ q 9@
=" {a,q)=1

and
1 1
S [y -,
Thus we arrive at
R(N) = f 1) S(c) Sa(a)e(~ Nea)da
M

(2.10) + f $1(0)S5(c))Ss(@)e(—Na)da

m

= Ry (N-) + RQ(N).

3. The contribution of the minor arcs

In the following paragraphs we shall always suppose « to be of the type

a 1
3.1 o= —+ A, AE—, 12alq, (a,q)=1
(3.1) . Al o 7, (a,q)

By applying Cauchy’s inequality we find that

fSl(a)Sg(a)Sg(a)e(mna) dev

1/2 1/2

1 1
(32) < max[i(a) / 1S5 () 2 dox f 1Sy ()2 da
i} 0

NIL?

P

< max |S1(a)]
aEm

I order to estimate the maximum we use the following theorem established
by Balog und Perelli [2]: For M £ N, {a,q) =1 and hy=(r,q),

1, .1 4
. hyN Nz Nbs
E Aln)e (En> < L® ifl.iw -} g———l—— +—

nG A q rqz h-.:? v
n=b(mod r)
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Applying partial summation and {(3.1) we derive

max |Sy{a)] €« (1+1AN) 1max Z A(n)e(%)

aem
n.é!\u’
nzb{ modr}
4
N N N3 .
(3.3) < (1+ —) (—1+q%N% + = ) L
ch g2 rE
NL3
From (3.2) and {3.3) follows
N2LS
(3.4) Ro(N) < i

4. Some auxiliary results for the calculation of the integral
over the major arcs

We quote the following lemma from [1]:

Lemma 4.1, Let (a,q) =1 and (b,hg)=1. Then

% ; . e
Cxogftag s hosbya) = { 10/ e(32) ¥ @/ ) =1,
Az 0 otherwise,
where ,—'i% = 1(modr).

LEMMA 4.2. Let 8> a =20 be two positive integers and p a fized prime

number. Then for a primitive character x modulo 3, an integer a with pla
and {b, hy) =1 there is

C(X7pﬂvpa) b; (l) == 0-

Proo¥. If o=0 the lemma is contained in Lemma 5.4, [7]. In the other
case we write ¢ = gp and find

Ao
b . s
Clx,p%,p% b,a) = 6(%) >, e(;ﬁ—gﬁ) x(b+sp®)

P
v , .
e(;ﬁ:) E x (b4 vp® +wpf ).

w=1

|
TN
=
S
s
N
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If B — =1 the inner sum in the first line vanishes and if - a>1 the inner
sum in the second line vanishes because y is primitive.

LEMMA 4.3. Let > a 20 be two positive integers, p a fized prime num-
ber and a an integer with (p,a) =1. For any character x = Xx"Xo, where x™
is a primitive character modulo p7 with 1 S v < and xo is the principal
character modulo p? with v £ A £ B, and for any (b, hy) = 1 we have

C(X,pﬁ,p“,b,a) =},

Proor. If & =0 this follows from Lemma 5.4 in {7]. In the other case,
similar to the proof of Lemma 4.2, we obtain:

I’)B -0

. ba sa .
C(Xapﬁ:pa’b’a) = e(mcf) Z e( ﬁwa) X" (b+sp®)
p s=1 P
ba P 2 P wa
C(B)E ) e (%)

For 4 — o =1 the inner sum in the first line vanishes whereas for f—a>1
the inner sum in the second line vanishes.

LEMMA 4.4, Let r be a positive integer, ¢ o positive integer with ¢ = q14z,
(g1,92) =1, b an integer with (b, hy) =1 and x4(mod q/hgy) three characters
with xq(mod q/hag) = xa1(mod g1/ hag, ) X X2 (mod ga/hog, ) (dE {a,b,c}).

(a) For g=g1q2 -+ 92q1, (g1,91) =1 and (g2, q2) =1 we have

C(Xda 4q, h’qa b: g) = O(Xdl yq1sy hcn s b: g]‘)C(XdZ, G2 h'qz 3 ba 92)

2
(b) A{g, by, N,y Xas Xbs Xe) = HA(Qia h'qu, Xai»> Xbis Xei)-

gzx]

Jr(c) For a primitive character x modulo q and an integer a with {g/hy, a)>1
we have:

Clx,q, g, b,2) =0,
Proor. (a) By definition

g
(41) Clxasthabi9) = ) Xd(”’")e(%g”) '

me=l
mzzb (mod lig)
{m,g)=1
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We choose two integers b; modulo kg, and by modulo kg, such that

(4.2) b1ga -+ bagn = b (mod hy),

(these numbers exist because (g1, ¢a) = 1). Thus we can write any m over
which is summed in (4.1) as m=m;qy +maq with m; =b; (mod hy,). From
(4.2) we see that b; =bg; (mod hy, ), (7€ {1,2},7#4, ¢;4; = 1 (mod hy,)) and
so from (4.1) we obtain

C(Xd) s hq: ba Q) =
g1 b2
> S e((m}qz +maqi)(g1¢2 +9‘291))
eyl mg=1 142
my 2bEE (mod hgy ) ma =gy (mod hgy )
(my,qy =1 (Mg, gy =1

XX xde(migs +maq)

G G2
mig142 magadl
Z 6( qgl —) Xdl(mlfm) Z 6(””””**"*”*“) xaz(maq1)

el gl 42
my =04z (mod hgy } Mg =T (mod hgy )
{my.91)=1 (mg,ga )=l
b m1g 1z Mo
141 242
> € ( p ) Xa1 (1) > € ( ) Xd2(ma)
my el '“' gl q2
my =0 (mod hgy ) ma=b{mod iy, )
(yaqy )=1 (mg.99)=1

O(Xdl: qi, h'(n 5 b: gl)C(Xd% q2, h’qm b: 92)'

Part (b) follows from Part (a) and (2.3). For the proof of Part (¢} we note

that there exists a hye <p® || g, o 2 1 satistying pla. We write a = agp® +

g . o
ay %; and see from Part (a) that it is enough to show that C(., p%,...,a1) =0.

From pla follows pla; and therefore Part (c) follows from Lemma, 4.2.

Lemma 4.5, For any fized positive integer N that satisfies the congru-

ence conditions of Theorem I, an integer ¢ and integers (by,r) =1, i €
{1,2,3} define:

N(q) = card {al,az,asr 1S a;Sq, ;=0 (mod hy), (ai, q)=1,

(2€{1,2,3}), a1 + a2+ azs= N (mod q)}

(a) For {q1,q2) =1 we have

N{qig2) = N(q1}N (g2)-
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(b) Let p [j». For every integer 3 Za+122 we have

Pﬁ‘?”s (hlpB )
P ﬁfi)
f bops

For B2 a+1=1 we have

NPy =P 0) ey e

pe
3
¢ ( h,gpa >

pd'(p) ) = BN @) (p)
s P -1
¢ (h?ﬁ)
(¢) For p®|ir and

(4.5) Bp)=Y_ AW hys, N,
pz1

(4.3)

pPd?(hyps)

(4.4) NPy =

we have

» )
e N if hy=1,
14 B(})) ={ (p* 1)3 (P) f 1%
P if by > 1,

Jor p&||r. For (p,r)=1

Cp( N)

14+ Bp)=1- =T

is true with

(V) = i c(%\j—) .

(@ q)=1

ProOF. (a) This can be shown in the same way as Lemma 4.4 (b) if we
note that

q
Z Xo,q/hgqa G h'q’ b]_, G)C(Xo,q/fzgq> 4, hqa b2, a)

—alN
XC(Xo,q/hgq}(.{:]l’qabliaa}e( q )

N(q)=

Ql*—-‘

because of Lemma 4.4 (c).
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(b) We write a; = b; + ¢;p™ and by +bg + b3 = N (mod p®). We see that
for pza+122:
NP = card {1 S EpPTe, (1€ {L,2)), (by+bo+by— NY/p*+c1 +catco
=0 (modpﬁ"“)} = p?l0—a),

Taking into account hlp@ = fgpa == %, hgp@ =hype =1 for f2 a+1 the first
equation in (4.3) follows straight and the second follows from N(p®) = 1. For
the proof of (4.4) we note

NG”) = cud {000 1S a 5%, (as,p) =1, (1€ {1,2)),
ap+as— N#0Q (modp)}.
We write a; = ¢; + d;p®~ !, (6. ¢ {1,2}) and find
N(pB) = card {Cl,()g,dl,dg: 1< <pPt, (ei,p)=1, (€ {1,2}),
¢ e —NZ0(modp), 1 d; §p}

= NP,

Using hp =1 we can derive (4.4) by repeatedly applying the same argument.
(¢) In the first case the Lemmas 4.1 and 4.4 (¢) imply that 1+ B(p) is
equal to

p—-1 p—~1 p=1

L+ A(p, hy,n) = (p_l)—azz Z Z ( a1+a2+a3-N)

he=1a1=1ae=1as=1

= ﬁN(p).

In the other case we have

&
(46) 1+ 3 AW by, N) ._1+Z¢ _1+Z(pﬁ—pﬁ*1) = p®,
f=1

821

The last part of the lemma follows straight from the definition.
LeMMA 4.6.

(47) 4)3() Z A(Q’,hq, ):J(Nar'":""l)+O((PT‘)41+E),

q<P
{g.m1)=
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with
. -
as) oW =gy 1127 11 (1-‘(’?;(_‘1")’2,),
<r>.8i‘)r1 (parr1)=1 f
1y e

where cg(n) is defined as in Lemma 4.5 (c). Furthermore
”

4.9 o(N,r 1) —.

(49 > )

ProOF. Applying Lemma 4.1 we can write the sum in (4.7} as

1 1 1
FoRP N B Vsl FZORPY

g P g1 q>F
(q/hgslig)=1 {a/hg.hg)=1 {¢/hghg)=1
{g,ry )=l (q,r1}=1 {q.ry)==1

It is known from [6] that for 7y = 1 the first sun on the right side is absolutely
convergent and equal to

C(r) P p-D(p-1)-1) 1
2 g(g)—1)3+1 ]1)} (p—1%+1 P[Iz(1+(j)—1)3)’
{mr)=1

where all p>2 and C(r) is defined as in (1.2). A computation shows that
this is equal to the right side in (4.8). For a general 7, the same argument
applies. Applying Lemma 4.1 term we get the following estimate for the
error term uniforinly for all r:

BN e ye
Q{)S(?‘) q>."»(ﬂ;1)=1 T qf)3(',") ; 4)3 (7?‘;)

(q/hq.hq)-—:l (G‘/hq»f!fj)=l

1 #(hy)
- P04 ¢z(q)

ol a
(q/ffﬁfq)zl fg
1 1
L s > o(h) 5
2 T
EZP/h
1 g 2
€ 73 P 'Zh
¢3(r) "
1 e
g ¢3(7)P 1-!-(.7,2((2)

& (Pr)7tt,
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where, in the last but one step, we have used the inequality 3" d% < r2¢(2)
dfr
which can be found in (3.44) in [8]. (4.9) follows from (4.8).

LEMMA 4.7, (a) Let yymod ky, xomod ko and x3mod ks be three prim-
itive characters and k= {[ky, ko, ks]. Then

> 'A (q, g Ny X2 X0, 7 X2X0, 12 » xm,,g) { <[Jt+Bm),
p U] 2¢ q "
qEOJ(TnIo(I ) P

where B(p) is defined as in (4.5).

{b) Let A be a character. Then among all the ¢ <1 there exists at most
one ¢ and at most one pair of characters x; (mod g;/hay,) and & (modr /hig,)
with §xi = A and for which C(X, q, hy,b,a) #0 for any (b,r)=1, (a,q)=1.

Proor. Denote J the left-hand side in the lemma. By the definition of
the C(yx,...) we can obviously substitute Xo, ;4 by Xo,q in J. For each ¢
t2g

over which is summed in J we write ¢ = q,qp, where
(g k) =1, plga=plk.
Therefore, by using Lemma 4.4 (b) we have
(4.10) Ag, )= Aldas Pgar Ny X1X0,ga X2X0,g0> X3X0,00) AQby Pgy, N ).
From Lemmas 4.1, 4.3 and 4.4 (a) we obtain that
(4.11) Alga,.. . Y #£ 0= g, =k
By using Lemmas 4.2, 4.4 (a) and 4.5 we see that

| A (R, by N, X1 X0,8 X2X0,k X3X0,k)|

. ke¢® (hyy,
(112) = | F¢"Cun) > X1Xo,k(@1)x2X0,4:(a2) XaXo0,k(a3)

¢ (s
Tog, 18a; 5k, {a;,k)=1,
- a;=b; (mad fy,)

ayHagtagz=N (mod k)

k‘i’s (h'lkt)
3f k.

#(1%)

= [+ B®)).

plk

7N

N (k)
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Moreover,
(4.13) H (1+Z |A(p“,.’7,pa,N)O & H (1+ B(p)).
(p,k)=1 azl (ph)=1
The last inequality follows from Lemma 4.5 (¢} and from an argument similar

to its proof. Thus we dcl ive Part (a) from (4.10), (4.12) and (4.13).
(b) Let & (mod 5= ) and y; (mod —L) be any pair of characters with

£ = A We write q; = g} g, where ¢ is the largest divisor of g; with ¢/hgq =1
and hi, = 1. By using Lemma 4.4 (a) we have

C(Xh Q'u h‘q;': CL, bt) - C(X'L)q'i, ] hqi Yoty b )C(XO,Q, h‘qa v )bi-)'

Arguing as in (4.11) we can assume higgr = 1 and by applying &x; = A we
find:

m
T 7
Ki=giym=4 T ﬁ
i=l pi

where

(4.14) @ =1 A>a>0, 5 VI

If we suppose that there is another pair of characters &; (n‘lodﬁ“ﬁ;‘j‘) and
1

4i o i P _ ; .
x; (mod Ef;) satisfying £;x; = M we see — when applying the correspond-

ing notation — that

m P 1 r

Hp — (rg )P _—

=l e T ()

g=1

From (4.14) we conclude tha,t this equality holds only then if ¢; = ¢} and if
the products in both the numerators and the denominators are equal. This
proves Part (b) of the lemma.

LEMMA 4.8. Ifx 2 N Y2 there exists an absolute constant cq such that
for a sufficiently small

Z Z Sy, T) < Q1 )3 exp(—ca/8),

gST xmodg

where S denotes the summation over all primitive characters y modq.
x mod g

ProOOF. This is Lemma 2.1 in [6].
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5. Simplification of I;(N)

First we simplify the S;(a). As in {4}, we derive the following equivalence
from (2.1) and the Chinese remainder theovem

x = by(mod 1) @ = b(mod 7/hyg)
=g (mod ¢) = r=g (mod ¢/ hag).

Thus we obtain

gi(_;i+n): i e(gf) > logpe(pm),

g=1 q NiGSpaN
{g5)=1 p=by(mod r)
gy (mod hy) p=g (nod g)

- i e<99) > logpe(pn).

g==l N/Ggp(.’\’
{a)=1 pe=by(mod »/hy,)
gmby (moed hg) . ]
L p=glurod q/hzq)

We shall introduce the Dirichlet characters & mod r/hj; and x mod
g/hog and obtain

S a =w.me(ﬁ_“f) 1 i
(q +n) o(r)d(a/hag) mo%,”f(b :

X Z C(“X-:q}h(jabixa)‘s'(é)(aﬁ)a

ymod g/hey

(5.1)

where we have used the fact that the primes in the summation range are
prime to the modules of all the characters £x. For further use we note that
if £y is induced by a primitive character A*, then

(5.2) A== £

for two primitive characters £* and x*, whose moduli are prime to each other.

For the exceptional Siegel character A to the module T° we write

(5.3) A=E%, fmodr, ¥modr

with 7 =775, where 7 is the exceptional module and ¢ and ¥ are two real
primitive characters. We know from Lemma 4.7 (b) that we only have to

consider one pair £ and x. We now quote Lemma 3.1 in [6].
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LeEMMA 5.1. For any real n and any character Amod g with g <P, we
have

S(A ) = 83, Z07) = 855 () = L) + O+ [ NINEPT ™),
where

P 1 4f A= Xg (modg), G d 1 if A= AXg (mod g),
A0 =N 0 otherwise, AT ) 0 otherwise.

First we simplify Iy (V). Set
Gi(ﬁ,, q, 77) = }: E(bt) Z O(Y)Q}'hq:bi;a)fﬁx(n)

Emodi/hig v mod ¢/hzg
and
I{i(a: q, "7) = C(XO,H;L » s h’qa bi-: G’)I(77)
4
- qé(bz)C@Xo,ﬂ% 3Gy hqa b'i: a)f(ﬁ‘) - G'E(ar q, 77)7
q
where

if 7 L
5= 1 lf?llfnq’ 72|hzq,
0 otherwise.

For any ao=%+nel (a,q) we use the argument on p. 604 in [6] and derive
the following from (5.1):

(o) =2 (o
S = G6)0la/m) (H’"( R

O( Z Z {1+ !’!7EN)|C(“§(", q, hqabz‘,a)lNL‘?_'I”l)),

& mod rfhig xmodg/hay

Using

< ¢Hg)p(r),

Z Z C(%,q, hg, bi, )

Emod i /hy ¥y modg/ha

in the same way as in (3.17) in [6] we obtain:

d) (hl
(M) (f)‘*(?} Z @3((}/];;(])
(5.4) , a N 3
4 ;*e(—aN) f G(’“']?N)HHQ‘(Q,Q,T?) - O(NQPM:[T._Q),

f=1

for a sufficiently large ¢ because of (1.3) and (2.4).
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6. The major arcs
We first quote Lemma 4.7 and Lemma 7.2 (1} in [6]:

LEMMA 6.1, For any complex numbers p; with0<Re(p;) £1, j=1,2,3,
we have

o0 3 X
fe(chr)) H/:cpf"le(n;r)dq; dn
(6.1) ~oo =153

3
:NB/H(ij)(pJ—l) dxydzs,
p J=1

where
2
ra=1-— Z Z5,
ju==i
and
D={{x1,22):1/38 21, 29,23 £ 1}.
Further,
(6.2} 1< f Ldayday < 1.

D

We define
G{my,mg, ... )= Z X(ma)x(ma). ..,

151, S0, (I, )=1
Limby (o ki ,12)
b Hgdig=N{mod g}

P(imy,ma,...) :m](Nazml )B"(N:cmg)’é—]' .. dzdas.
D

3

We know that [] H;(a,q,n) is sum of 33 terms which can be divided into
i=]

three groups:

3
T7: the term T O(XO’TL,(], hg, by, a),
12(1

i=1
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Ty: the 19 terms each of which has at least one Gi(a,q,n) as a factor,

Ty: the remaining 7 terms.
‘We write for 1=1,2,3

1 ¢ {h1g) I, (—Na)
M, = — —Na
¢'3(?‘)qupd>3(fﬂhzq); Ny

X f e(—Nn){sum of the terms in T3} dn.
~o0
Thus we can write (5.4) as
(6.3) 11 (N} = My + My + Ms + O(N?P %),
Let

Py = N2 / 1daydas.
v

We now give lemmas concerning the contribution of the M;. The proofs are
the same as the ones of the Lemmas 5.1 to 6.1 in [6]. Therefore we will not

give them in their full length. Our procedure differs far from the one in 6]
in so far as we have assured in (2.8) that # is small compared to P and 7',

Yo we need not prove an equivalent for Lemma 5.5 in [6].

LEMMA 6.2,
1

/I = een
M= 550y

Po [J(1+ B®) +0 (N*(Pr) 7).
2]

This is proved in the same way as Lemma 5.1 in [6] by using Lemmas
45 (c), 4.6 and 6.1, With the notation of (5.3) we have:

LEMMA 6.3.

My = Lo T2¢° (has, ) I a+Be) ~zs:g(b‘)G(j)P(j)?‘
i (r) ¢ (F2/hor,) (p2) =3 = !

+ S iGN PG,)

15i<i53

_g(bl)g(bQ)g(b{i)G(la 2, 3)]7(]_} 2, 3)}

+O(N2 (P/’F‘Q)—l-l—e'n"f).
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The treatment of the integral follows exactly the proof of Lemma 5.2 in
[6] by applying Lemma 6.1. As an example for the treatment of the singular
series we choose the term containing G(1). Denoting the singular series W
and arguing as in (4.10), (4.11) and (4.12), we obtain

_ L 7)) { r
W6 Pl OO 2 Ak
(q.79)=1

+0( 3 1Al he M) }

q>P/[fFa

where we have used that £(b)) = £€4(b;) for any principal character & to a
module of the form r/hy,. Whereas the main term is already in the desired
form due to Lemma 4.5 (c) and Lemma 4.6, we argue as in {4.13) and use
Lemma 4.6 {b) to obtain

1 7y (hyg,)
3 (1) 3 (7 /hary)

IG(1)] Z |A(q,hq,N)|<<H(1+B(p))(p?./,,~.2)~1+e_

q>P/iy plFs

By applying Lemma 4.5 (c) we can estimate the product by < from which,
together with (6.2), we can derive the error term. According to (1.3) we
suppose r < N°" :=T] for a sufficiently small §* and we assume also T2 <
Ty 1. Following the lines of the proof of Lemma 5.3 in [6] we obtain from
Lemmas 6.2 and 6.3:

LEMMA 6.4,

Q¥Tn)

M+ M. A
LM

Po [[(1+ B(p)) + OV (/)™ ")
P

LeMMa 6.5,

3¢
Mo < Q—(ﬁg%%‘—l exp(—cq/8)Po H(i + B(p)).

For the proof of Lemma 6.5 we treat exemplarily the term containing
Gila,q,m), Gola,q,n) and G3(a, q,n). We denote it by L, apply Lemma 4.7 {b}
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and find:

NS SHD NED YD MINED SED DI >

gS P Eymodr/hyg ximodg/hag & gamodr fh1g xamodg/hog Eamodr/hyg yamodg/hag

XA(Q:’IL(,':N)XLX%XB)/e(“Nn)Iszl(n)Iézxz(”?)I{:sx:;(??)d"'?

e e]

-/ 8(“N’?)aﬁ%f5

— 00

! 7 /!
bt z Z Z Z I)n(??)IM(??)D\;;(??)A(Q,hqa N: Xl}XZ&X.’S);

g Pr A1 mod g Ap mod g Az mod g

!
where A; = &x; and Y. means that we only sum over such A that can be
dimodg

written as A; = &y;. Let x; be induced by xj mod 73 ¥ and A; be induced by
A¥ mod ry, then:

Lg /e(mN?] pere MZ Z Z D (mag () D (m)eln

mod )\2 mod g X“ mod rg
11<P rogSPr 7:3<P

— o0

#* * *
Z 1A(g, hgs Ny X3 X0, 4> X2 X0, 79 » X3X0, 5 )|
hag hag g
gSPr
qz=0 mod [ri ra r§]

Now the lemma is proved in exactly the same way as Lemma 6.1 in [6]
by using Lemmas 4.7, 4.8 (applied to "7} instead of T) and 6.1. From (6.3)
and Lemmas 6.4 and 6.5 we derive for a sufﬁcmntly small §:

QS(e:(v) Po H(1+B(1:r)+ O(N?(P[a)™ '),

If 3 exists, we can see from (2.7)~(2.9) that

(6.5) QTTY) = (1— ) log TTy > 7 “1/2(10g 7)1 3> P/ (log 7)1

We can now conclude the theorem from Lemma 4.5 (c), Lemma 4.6, (1.3),
(2.4), (2.8), (2.10), (3.4), (4.9} and (6.2)-(6.5).

64) L(N)»>

REMARK. The author wants to thank Dr. Jianya Liu for helpful discus-
s1O1S.
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