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Abstract— This paper investigates algorithms to determine an
optimal choice of the FEC parameters (n, k) to mitigate the
effects of packet loss due to buffer overflow at a wireless base
station on multimedia traffic. We develop an analytic model of the
considered network scenario that takes into account the traffic
arrival rates, the channel loss characteristics, the size of the
buffer at the wireless access point, and the influence of the FEC
parameters on the packet loss. Applying the theory of recurrent
linear equations, we present a new approach to establish a closed
form solution of the underlying Markov model for the buffer
occupancy and verify the analytical results via simulations.

I. I NTRODUCTION

The delivery of real-time multimedia traffic over wireless
networks is expected to be an important application in future
wireless networks. The perceptual quality of service as re-
ceived by the user suffers from packet loss, delay, and delay
jitter. Packet loss in wireless networks is due to two causes:

1) Packets might get lost or arrive corrupted at the receiver
when they are transported over the lossy air medium.
This can be caused by a low signal to noise ratio or
collisions with packets sent from neighboring access
points or nodes.

2) Packets are dropped from the queue of the wireless
access point (AP) if the queue is full.

In the following, we will refer to packet losses resulting from
reasons 1 and 2 aslosses of type 1and2, respectively.

Forward Error Correction (FEC) codes have been widely
researched as a method to achieve improved QoS [2], [9]. FEC
codes have been shown to be very effective against packet loss
provided that the losses are not too bursty [1]. A FEC block
code with a parameter set(n, k) takes a codeword ofk data
packets and generatesn−k additional parity packets, such that
a total of n packets are transmitted over the network. If the
sum of multimedia and FEC packets received at the receiver is
at leastk, thenk multimedia packets are recovered. Otherwise
only the received multimedia packets are recovered.

The rapidly changing network conditions in communication
systems imply a need for adaptive FEC protection schemes that
dynamically change the FEC parameters(n, k) depending on
the current network conditions. Various adaptive FEC schemes
have been proposed [3], [5], [8]. These papers make no
distinction between losses of type 1 and 2 and design generic
FEC algorithm for any lossy channel. The effect of FEC codes
to protect against packet losses of type 1 has been investigated
in [6].

In these articles, the effectiveness of anew FEC parameter
set is calculated using the current loss probability of the
considered traffic stream, i.e., it is assumed that the loss
probability of the channel is not influenced by a change in

the sending rate of the multimedia traffic due to a change in
the set of FEC parameters. For losses of type 1 this assumption
is roughly correct, if one assumes that the channel has enough
bandwidth to send the original multimedia packets as well as
the additional FEC packets at the same bit rate it was operating
before changing the actual FEC parameters(n, k). In contrast,
for packet losses of type 2, a change of the FEC parameters
leads to a change in the overall sending rate of the multimedia
traffic that in turn leads to a different occupancy of the AP
queue and thus influences the frequency at which losses of type
2 occur. Consequently, we see that the algorithms described in
previous papers only predict the effectiveness of FEC codes
correctly for losses of type 1, but not of type 2.

In [4], for the first time the effectiveness of FEC parameters
in view of losses of type 2 was investigated. However, the
continuous time model applied in [4] leads to a very complex
mathematical derivation and the actual calculation of the
effectiveness of the FEC parameters(n, k) is computationally
very expensive. The less complex, asymptotic algorithms also
proposed in [4] only give valid results for a limited range of
input parameters.

In this paper, we consider the problem of determining the
efficiency of FEC parameters(n, k) in view of losses of
type 2. In contrast to [4], we use a discrete time model that
provides both a short mathematical derivation as well as an
exact and computationally simple solution for all possible
values of network parameters. Different from previous work
quoted above, the current packet loss is not used explicitly as
an input parameter for the algorithm to determine the FEC
parameters. Instead, we develop a model of the network that
takes explicitly into account the arrival patterns of all traffic
streams in the network, the size of the buffer at the access
point, and the reliability of the wireless channel.

Technically, our approach is as follows: First, we develop a
Markov steady state model for the queue occupancy. Applying
the theory of linear recurrent equations, we establish a closed-
form solution for the Markov model. Second, we calculate the
loss probability after FEC recovery as a function of the FEC
parameters(n, k).

In the next section, we describe the assumed network model.
In sectionsIII and IV, we develop an analytic model of the
considered network scenario and calculate the loss probability
for multimedia traffic after FEC recovery. An application of
the algorithm developed in this paper to a real networking
scenario is explained inV. We verify our models numerically
in sectionVI and conclude in sectionVII .

II. N ETWORK MODEL AND TERMINOLOGY

We consider a network model that consists of a multimedia
sender and a multimedia receiver, a number of competing
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senders and competing receivers, and a wireless access point.
The multimedia sender sends multimedia packets and the
competing senders send unspecified packets over wired con-
nections to the AP. The AP forwards all packets over the
wireless channel to the multimedia or competing receivers.
For simplicity, we assume that all packets are of fixed, equal
size.

Packets that arrive at the AP from the senders are either
directly sent to the wireless interface of the AP or are queued
in a buffer within the AP. The AP buffer has a maximum length
T which corresponds to the maximum number of packets that
can be buffered. Any packets that arrive when the queue is full,
are dropped from the queue. In this paper, we only consider
AP-queues that follow a FIFO queueing discipline. The first
packet in a queue is sent over the wireless channel if the
channel is available. Depending on the wireless technology,
a retransmission or a wireless MAC layer FEC scheme might
be implemented. Throughout this paper, we assume a discrete,
slotted time model. For simplicity, we assume that both the
arrival of a packet to the AP from a sender and the successful
departure of a packet from the AP over the wireless channel
take one time slot. Assuming a Bernoulli model, we define
pA(≤ 1) and pC(≤ 1) as the arrival probability at the
AP-queue of a multimedia packet and a competing packet,
respectively, and setqA = 1 − pA, qC = 1 − pC . pD is the
probability that in a time slot a packet is sent successfully from
the AP queue over the wireless channel andqD = 1−pD. pD

only represents the rate at which packets leave the AP queue.
It does not include the rate at which wireless MAC layer FEC
packets or retransmissions of packets are sent over the wireless
channel if any of these technologies is implemented in the
wireless network. Finally, we abbreviate

(
a
b

)
as Ca

b . For the
analysis, we split a time slot in three sub time slots:
1. Packet arrival phase: Packets are sent from the multimedia
sender to the AP with probabilitypA. Competing packets are
sent from the competing senders with probabilitypC to the
AP. If packets are sent from both the multimedia and senders,
we assume that each of the two packets arrives before the other
packet with equal probability12 . The queue length is increased
by the number of arriving packetsa ∈ {0, 1, 2}.
2. Packet dropping phase : If after the packet arrival phase
there areT + d, d ∈ {1, 2} packets in the AP-queue, the last
d packets are dropped from the queue.
3. Packet sending phase: With probabilitypD the first packet
of the AP-queue is sent over the wireless channel and arrives
uncorrupted at the receiver. If the queue is empty, no packet is
sent. The queue length is decreased by the number of departing
packetsd ∈ {0, 1}.

We definePk, 0 ≤ k ≤ T as the probability that the AP
containsk packets at the end of the packet sending phase of a
time slot. In this paper, we will determine the loss probability
after FEC recovery for given parameterspA, pC , pD, T, n,
andk.

III. STEADY STATE MODEL OF AP QUEUE OCCUPANCY

In this section, we calculate the steady state probabilitiesPk.
As a novelty, we apply the theory of linear recurrent equations
to establish an explicit formula forPk. We first prove:
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Fig. 1. The transition probabilities for the AP queue occupancy.
Theorem 1:

P0 =
1

1 +
T−1∑
k=1

Ak

Ck Bk + Y
pD

, (1)

Pk = P0
Ak

Ck
Bk, 1 ≤ k ≤ T − 1, (2)

PT =
P0

pD
Y, (3)

where

Bk =

k
2∑

l=0

(
BC

A2

)l

Ck−l
l , 1 ≤ k ≤ T − 1 (4)

A = pApC + qApCqD + pAqCqD, (5)

B = pApCqD, C = qAqCpD, (6)

Y = (1 + C − pD − qAqCqD)
AT−1

CT−1
BT−1 (7)

−(A−B)
AT−1

CT−2
BT−2 −B

AT−3

CT−3
BT−3.

From the network model in sectionII and Fig.1, we see:

P0 = P0 (qAqC + qApCpD + pAqCpD) + P1qAqCpD, (8)

P1 = P1 (qAqCqD + qApCpD + pAqCpD)
+ P0 (pApCpD + pAqCqD + qApCqD) + P2qAqCpD,

Pk = Pk (qAqCqD + qApCpD + pAqCpD)
+ Pk−1(pApCpD + pAqCqD + qApCqD)
+ Pk+1qAqCpD + Pk−2pApCqD, 2 ≤ k ≤ T − 2,

PT−1 = PT−1 (qAqCqD + qApCpD + pAqCpD + pApCpD)
+ PT pD + PT−2 (pApCpD + pAqCqD + qApCqD)
+ PT−3pApCqD, (9)

PT = PT qD + PT−1 (pAqCqD + qApCqD + pApCqD)
+ PT−2pApCqD. (10)

Using the definitions (5) - (6), we rewrite (8) - (9):

CP1 = P0A (11)

CP2 = P1(A + C)− P0(A−B), (12)

Pk+3C = Pk+2(A + C)− Pk+1(A−B)− PkB,

0 ≤ k ≤ T − 4, (13)

PT pD = PT−1(1 + C − pD − qAqCqD)
− PT−2(A−B)− PT−3B. (14)

The relations (11), (12), and (13) imply (2) for k = 1, 2, 3.
Using induction and (13), we show that (2) holds fork+3, k+
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3 < T, provided it holds fork, k +1, andk +2. To prove this
claim, we insert the expression (2) in (13), and now have to
show that:

C
Ak+3

Ck+3
Bk+3 = (A + C)

Ak+2

Ck+2
Bk+2 − (A−B)

Ak+1

Ck+1
Bk+1

− B
Ak

Ck
Bk, (15)

which is equivalent to

A3Bk+3 = A3Bk+2 + A2CBk+2 −A2CBk+1

+ ABCBk+1 −BC2Bk+1,

which we write asX1 = X2 +X3−X4 +X5−X6. We recall
that Cn+1

k = Cn
k + Cn

k−1, Cn
0 = 1. Thus, from (4)

X1 −X2 −X5

= A3

k+3
2∑

l=0

(
BC

A2

)l

Ck+3−l
l −A3

k+2
2∑

l=0

(
BC

A2

)l

Ck+2−l
l

−A3

k+3
2∑

l=1

(
BC

A2

)l

C
k+1−(l−1)
l−1

= A3

k+2
2∑

l=1

(
BC

A2

)l
(

Ck+3−l
l − Ck+2−l

l − Ck+2−l
l−1

)

+A3
(
Ck+3

0 − Ck+2
0

)

+A3
∑

k+2
2 <l≤ k+3

2

(
BC

A2

)l−1
(

Ck+3−l
l − C

k+1−(l−1)
l−1

)

= 0. (16)

In the same way, we seeX3 −X4 −X6 = 0, which together
with (16) proves (15). For k = T, (3) follows from (2) for
k < T, and (14). (1) follows from (2), (3), and the fact that
T∑

k=0

Pk = 1.¤
Now, we simplify the expressions derived forPk in Theorem
1. We extend the definition of theBk in (4) by definingB0

asB0 = 1. First, we show:

Bk+1 = Bk +
(

BC

A2

)
Bk−1, k ≥ 1. (17)

For the proof, we show that

Ck+1
0 +

k
2∑

l=1

(
BC

A2

)l

Ck+1−l
l +

∑
k
2 <l≤ k+1

2

(
BC

A2

)l

Ck+1−l
l

= Ck
0 +

k
2∑

l=1

(
BC

A2

)l

Ck−l
l +

k
2∑

l=1

(
BC

A2

)l

Ck−l
l−1

+
∑

k
2 <l≤ k+1

2

(
BC

A2

)l

Ck−l
l−1 ,

which we write asY1 + Y2 + Y3 = Y4 + Y5 + Y6 + Y7.
Arguing as above, we seeY2 = Y5 + Y6, Y1 = Y4 = 1,
andY3 = Y7 ∈ {0, 1}.
We recall some facts from the theory of linear recurrent

equations: For a series defined asx0 = x1 = 1 and xn =
axn−1 + bxn−2, n ≥ 2 wherea, b ∈ R+, there is,

xn =
1√

a2 + 4b
[(1− β)αn + (α− 1)βn] , (18)

whereα andβ are the roots of the equationx2 = ax+ b, i.e.,
α = 1

2 (a +
√

a2 + 4b), β = 1
2 (a − √a2 + 4b). This follows

directly for n = 0, 1 and by induction forn ≥ 2.
From (17), (18), and the fact that for theBk, there is1−β = α,
we see thatBk = B∗

k , where

B∗
k =

(1 + KABC)k+1 − (1−KABC)k+1

2k+1KABC
, (19)

KABC =

√
1 + 4

BC

A2
, 0 ≤ k ≤ T − 1.

We use relation (19) to calculateD :=
T−1∑
k=1

Ak

Ck B∗
k as follows:

D =
A

CKABC

[(
1 + KABC

2

)2 T−2∑

k=0

(A (1 + KABC))k

(2C)k

−
(

1−KABC

2

)2 T−2∑

k=0

(A (1−KABC))k

(2C)k

]

=
A

CKABC

[(
1 + KABC

2

)2 (A(1+KABC))T−1

(2C)T−1 − 1
A(1+KABC)

2C − 1

−
(

1−KABC

2

)2 (A(1−KABC))T−1

(2C)T−1 − 1
A(1−KABC)

2C − 1

]
. (20)

From Theorem1, (19), and (20), we obtain Theorem2 which
reduces the complexity of the calculation of thePk in Th. 1.
HereY ∗ is defined asY in (7) with Bk replaced byB∗

k .
Theorem 2:

P0 =
1

1 + D + Y
pD

,

Pk = P0
Ak

Ck
B∗

k , 1 ≤ k ≤ T − 1,

PT =
P0

pD
Y ∗.

IV. PACKET LOSS PROBABILITY AFTERFEC RECOVERY

We first calculate the probabilityPloss that a multimedia or
FEC packet arriving at the AP in the packet arrival phase is
dropped in the packet dropping phase of the same time slot.
This happens if at the beginning of a time slot:

• There areT − 1 packets in the queue, and a competing
packet arrives before the multimedia at the queue.

• There areT packets in the queue.

Consequently,

Ploss =
1
2
PT−1pC + PT . (21)

Based on our model (sec.II ), the factor 1
2 expresses the

probability that if in a time slot packets are sent from both the
multimedia and the competing sender, the competing packet
arrives before the multimedia packet. We note that to apply
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Theorem2 to calculatePT−1 andPT in (21), pA is increased
to pA

n
k to account for the FEC overhead.

Arguing as in [7], we now calculatepi(k, n) as the probability
to losei multimedia and at leastn−k− i+1 FEC packets at
the receiver andEloss as the probability to lose an individual
multimedia packet after FEC recovery as follows:

pi(k, n) = Ck
i P i

lossQ
k−i
loss

n−k∑

m=max(0,n−k−i+1)

Cn−k
m

×Pm
lossQ

n−k−m
loss ,

Eloss =
1
k

k∑

i=1

i× pi(k, n). (22)

Using Theorem2, (21), and (22), we see that if we compute
the values ofCa

b forehand, the complexity of the calculation
of Eloss is O(kn). This is less than the complexityO(n2k2 +
Tnk2) of the (exact) method in [4].

V. A PPLICATION SCENARIO

In a real application, the multimedia sender must know all
the relevant input parameters to calculatePloss (21) andEloss

(22). The multimedia sender knows the multimedia arrival rate
pA and the parameters(n, k). The maximum queue lengthT is
a static value which at the time of network configuration can be
communicated to the sender. The value ofpD can be derived
by deploying a specialized wireless MAC layer measurement
software, which has been developed by the authors, at the
receiver. However, the arrival rate of the competing trafficpC

is in general not available to the multimedia sender.
In this section, we propose a two-step procedure to calculate

the valuesPLoss andEloss when the actual value ofpC is not
known to the multimedia sender. First, for given values of
pA, pD, PLoss if no FEC protection is applied and for given
values ofpA, pD, n, k, Eloss if FEC protection is applied,
the equations (21) and (22) are used to determine the actual
value ofpC . This procedure is explained in detail in the next
paragraph. Second, in order to determine an optimal FEC
parameter set(n, k), the determined value ofpC is used as
an input parameter to the expression (21).

The derivation of (21) and Th.2 shows that for given values
of pA, pD, and T the formula (21) establishes a one-to-one
and monotonic mapping betweenpC andPloss, i.e., for a given
value ofPloss there is one possible choice ofpC . Similar, for
givenpA, pD, T, andn, k, the relation (22) establishes a one-
to-one and monotonic mapping betweenpC andEloss.

The multimedia server knows the actual values ofpA, n,
and k, and can obtainPLoss or Eloss from the multimedia
receiver. In view of the monotonic relation betweenpC and
Ploss or Eloss, the multimedia server now determines the
actual value ofpC as follows: It performs an iterative search
over possible valuespC that uses a binary chop strategy to
find the actual value ofpC with a predefined accuracy.

In practice, thefeasible choices ofn andk will be limited
by the bandwidth and latency overhead introduced by the FEC
code. The procedure described in this paragraph can be used to
find the parameter setn andk among all feasible choices ofn
andk that minimizes the loss probability after FEC recovery.

VI. N UMERICAL RESULTS

In this section, we present simulation results that verify
the accuracy of the expressions (21) and (22). We used the
C programming language to build a model of the network
model and simulated 1000000 consecutive time slots. Fig.
2 shows the change of the multimedia packet recovery rate
after FEC recovery as a function of the FEC parameterk.
The simulations show that the analytic model fits exactly the
simulation results, i.e., the difference between analytical and
simulation results is within the expected statistical variance of
the simulations. The difference is so fine that the respective
values cannot be distinguished in a graph.
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Fig. 2. The loss probability after FEC recovery for changingk with T=200,
pA=0.2, pC=0.5, n=17.

VII. C ONCLUSIONS

This paper presents an algorithm to determine the optimal
choice of FEC parameters(n, k) to protect a multimedia
stream sent over a wireless network from packet losses due to
packet dropping at the queue of the wireless access point. We
develop a mathematical model of the wireless network that
takes into account the exact arrival pattern of the multimedia
stream, the accumulative arrival rate of all other traffic arriving
at the wireless access point, the loss model of the wireless
channel, and the queue size of the wireless access point.

The theory of linear recurrent equations is applied to estab-
lish a closed form solution of the steady state Markov model
for the buffer occupancy. We propose a deployment scenario
for the algorithm and verify the effectiveness of the algorithm
via network simulations.
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