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Abstract— This paper proposes a new procedure of low-
complexity to determine the encoding parameters for the
MPEG-4 AAC encoder under real-time constraints. In par-
ticular, it addresses the optimization problem of minimizing
the distortion subject to a rate constraint for an MPEG-4
AAC encoder. Existing implementations use the heuristic
Two Loop search to solve this optimization problem. This
paper presents a new solution algorithm which achieves dis-
tortion values significantly lower than the Two Loop Search
and which, due to its low computational complexity, is a
promising technology for future AAC implementations. We
show via simulations that the technology presented in this
paper significantly outperforms previous technologies.

I. Introduction

In recent years, the delivery of multimedia content over
wireless networks has rapidly gained importance. Multime-
dia applications are expected to be the driving applications
for high bandwidth Third Generation Cellular, WiMAX,
and WiFi networks. The success of these technologies also
depends on the availability of low bit rate audio codecs
such as MPEG4-AAC.

AAC achieves perceptual qualities at low bitrates by ex-
ploiting perceptual redundancies in the signal. The AAC
encoder partitions each audio frame into a number of
bands, and for each band, dynamically allocates bits to
encode the transform coefficients. In addition to the en-
coded transform coefficients, the quantizer step size and
the Huffman Code Book of each band are transmitted to
the decoder as side information. The total transmission
rate from the encoder to the decoder is the sum of the
bits needed to encode the transform coefficients and the
bits needed to encode the side information. The side infor-
mation itself is encoded differentially and thus depends on
the relation of the parameters at adjacent bands. To en-
sure a low bit rate encoding, the encoder must choose the
quantizer step size and the Huffman Code Books such that
the total transmission rate is below a predefined threshold,
while ensuring that a predefined objective measure for the
perceptual quality of the decoded signal is satisfied. The
inter-band relationship of the transform parameters shows
the complexity of the optimization problem.

The most common perceptual quality measures is the
average weighted (ANMR) noise to mask ratio, which are
also called the average distortion. We define the ANMR
in section II. In this paper, we investigate the problem of
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determining the set of the encoding parameters that opti-
mize the ANMR/MNMR subject to an upper bound on
the permissible transmission rate. Obviously, low trans-
mission rates that do not compromise the quality of the
received audio are of strong interest to the delivery of au-
dio content over bandwidth constrained networks. The
most common procedure to solve the ANMR problem is
the Two Loop Search (TLS) [3]. The TLS uses a heuristic
approach, which neglects the inter-band dependencies of
the side information and thus simplifies the problem signif-
icantly by optimizing the two encoding parameters - quan-
tizer step size and Huffman Code Books - independently for
each band. This leads to an increased total transmission
rate and/or an increase of the ANMR.

In [1], a joint optimization of the encoding parameters of
all bands has been proposed. The possible choices of the en-
coding parameter are modeled as a trellis and the ANMR
problem is solved using an iterative Viterbi search through
the trellis. The cost function includes a Lagrangian mul-
tiplier that penalizes any violation of the target rate. The
Trellis Search has been further refined in [13].

In [2], algorithms that find the optimal parameter set-
tings for both the SFs and HCBs are presented. The au-
thors show that both the Trellis Search [1], which achieves
distortions on average 10% above the optimum value, and
the optimal solution algorithms in [2] are computationally
too complex for real time applications.

In this paper, we propose the Fast Trellis Search algo-
rithm, which qualitatively performs as well as the Trellis
Search [1], but is of significantly lower complexity than
the Trellis Search. The complexity of the Trellis Search
is caused by the iteration over the Lagrangian multiplier
and the solution of an optimization problem for each itera-
tion. Using results from mathematical analysis and digital
signal processing theory, we show that it is possible to de-
rive a good estimate for the final Lagrangian multiplier -
without having to iterate over all initial Lagrangian mul-
tipliers - from the properties of the signal. In particular,
we express the final Lagrangian multiplier as a function of
the Perceptual Entropy of the signal and the target rate of
the encoding process. This relationship is the base of the
Fast Trellis Search as it avoids the iteration over various
Lagrangian multipliers, which reduces the computational
complexity. We will show that the Fast Trellis Search is a
candidate for future real-time implementations of AAC.

In the next section, we develop an analytic formulation of
the problem under consideration. In section III, we develop
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the Fast Tellis Search algorithm. We numerically evaluate
the Fast Trellis Search in section III-C and conclude in
section IV.

II. Problem definition

The AAC encoder converts the time domain signal into
the spectral domain using the modified discrete cosine
transform (MDCT). The 1024 spectral coefficients obtained
via the MDCT are grouped into N scale factor bands
(SFBs). Within each band, all coefficients are quantized
using the same scalar quantizer. As not all 1024 coeffi-
cients are relevant for the perception of the decoded signal
by the human ear, not all coefficients are quantized. The
quantizer step size is controlled by a scale factor (SF) se-
lected from a range of typically 60 SFs. Within a SFB,
the quantized coefficients are entropy encoded using a Huff-
man Code Book (HCB) selected from typically 12 HCBs.
The SF and HCB parameters are transmitted as side in-
formation.

In order to formalize the problem of minimizing the dis-
tortion subject to a rate constraint, we introduce the fol-
lowing notation. We assume that a frame consists of N
scale factor bands SFBi, 1 ≤ i ≤ N, and that the encoder
can choose from a set of M1 scale factors and M2 Huffman
Code Books. Further, let si be the SF value and hi be the
HCB value for the ith scale factor band in the frame. We
define vectors S = {s1, .., sN} and H = {h1, .., hN}. We
assume that the si and the hi only take integer values and
require 1 ≤ si ≤ M1, and 1 ≤ hi ≤ M2, ∀i, 1 ≤ i ≤ N.
Both the si and hi are indexes into sets of pre-determined
Scale Factors and Huffman Code Books, respectively.
The average noise to mask ratio (ANMR) [3] is defined as
the ratio of the quantization noise to the masking threshold
[14]. To express the ANMR analytically, we define d(si)
as the quantization error of the i-th scale factor band if the
i-th scale factor is chosen equal to si. wi denotes the weight
of the i-th scale factor band which is defined as the inverse
of the masking threshold (see [14]) of the i-th band. The
ANMR is expressed as

ANMR(S) : =
1
N

N∑

i=1

wid(si). (1)

In the following, we derive an analytic expression for the
transmission rate. The transmission rate consists of three
parts:
• Let Qi(si, hi) be the bits required to encode the quan-
tized coefficient indices of the ith band with the SF value
chosen as si and the HCB value chosen as hi. We note
that the function Qi(si, hi) is also a function of the actual
signal X., i.e. Qi(si, hi) := QX,i(si, hi). In general, for any
two different signals X and Y, QX,i(a, b) 6= QY,i(a, b). As
we only consider a fixed signal, we omit the index X.
• The function F (si−1, si) gives the number of bits required
to specify the SF for SFBi. As the SFs are encoded dif-
ferentially, we note that F (si−1, si) := F (si−1 − si).
• Finally, G(hi−1, hi) = G(hi − hi−1) represents the num-
ber of bits needed to encode the HCB value of SFBi.

The transmission rate R(S,H) is defined as

R(S,H) = Q1(s1, h1) +
N∑

i=2

(
Qi(si, hi)

+F (si−1 − si) + G(hi−1 − hi)
)

. (2)

For a given rate threshold Rt, the ANMR problem is
then defined as follows:

Minimize ANMR(S) (3)
such that R(S, H) ≤ Rt. (4)

III. Fast Trellis Search

A. Fast Trellis Search: A direct estimate of the final
Lambda multiplier in the Trellis Search

We first revisit the Trellis Search in [1]. The author
builds a trellis consisting of N stages where each stage cor-
responds to a SFB. The states of each stage i are the set
of all possible choices of the parameters hi and si. Each
path through the trellis corresponds to a specific choice of
the quantization parameters si and hi. For the solution of
the joint optimization problem as defined in (3), the au-
thor uses an ”unconstrained” cost function that is the sum
of the distortion as expressed in (1) and the product of a
Lagrangian multiplier Λ and the rate R(S,H). Using the
definitions introduced in section II, the cost of choosing a
path in the Trellis that includes the subpath from the i−1-
th band at stage (si−1, wi−1) to the i-th scale factor band
at stage (si, wi) is defined as

C(si−1, hi−1, si, hi) = wid(si)
+Λ (Qi(si, hi) + F (si−1 − si) + G(hi−1 − hi)) .

The Trellis Search iterates over the Lagrangian multi-
plier Λ and uses a Viterbi search to find the cheapest path
relative to the norm C(si−1, hi−1, si, hi) through the trellis
for each Λ. The iteration stops when ANMR(S) does not
decrease any further and the rate constraint (4) is satisfied.
The iteration over Λ leads to the high computational com-
plexity of this approach which makes it not feasible for
practical applications. In the next section, we propose the
Fast Trellis Search which avoids this computational com-
plexity. It derives a close guess for the value of the final
Lagrangian multiplier Λfinal in the iteration without hav-
ing to iterate over all previous values of Λ.

B. Facts from digital signal processing theory

In (1), we have introduced the average noise to mask ra-
tio ANMR as a unit-less number. Alternatively, using a
logarithmic measure, we use the definitions in [15] to ex-
press the quantities average noise to mask ratio ANMRdB

R ,
the Average Signal to Noise Ratio ASNRdB

R and the Av-
erage Signal to Mask Ratio ASMRdB in dB. The Average
Noise to Mask Ratio ANMRdB

R can then be expressed as

ASNRdB
R −ASMRdB = −ANMRdB

R . (5)
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We have indexed the ASNRdB
R and the ANMRdB

R with
the rate index R, because both quantities depend on the
actual rate R. Using the definition (1), we see

ANMRdB
R = 10 log10

(
1
N

N∑

i=1

wid(si)

)
. (6)

We will make use of the notion of Perceptual Entropy
PE that was introduced by Johnston [7] and is summa-
rized in [9]. Perceptual Entropy is defined as a measure of
perceptually relevant information contained in any audio
signal. Expressed in bits per sample, PE represents a the-
oretical limit on the compressibility of a particular signal.
An explicit calculation of PE has been given in [9]:

PE =
1
M

N∑

i=1

bhi∑

bi=bli

[
log2

(
2

[
Re(tbi

)√
6/wiki

]
+ 1

)

+ log2

(
2

[
Im(tbi)√

6/wiki

]
+ 1

)]
, (7)

where

i index of critical band,
bli upper bound of band i,

bhi lower bound of band i,

ki number of transform components in band i,
bi, index of the transform coefficients in the ith

critical band,
tbi , transform coefficient in the ith critical band,

and wi is the inverse masking threshold as defined in sec-
tion II. We note that in the literature the PE is often
defined with an additional factor 1

M on the right side of
(7).

It is known from [10] that a noise, in particular the quan-
tization noise, that falls below the masking threshold is
inaudible. Thus, when a signal is (theoretically) encoded
with PE bits, at each band the masking threshold is chosen
as equal to the inverse of the distortion, i.e.,

wi =
1

d(si)
. (8)

We see from (5), (6), and (8) that

ASNRdB
PE = ASMRdB . (9)

Assuming a uniform quantization step, we know from
[15] that for any rate R, there holds statistically

ASNRdB
R =

cR

M
− k, (10)

where c = 6.02, M is the number of quantized coefficients
(see section II), and k is a constant that depends on the
PDF of the signal. As AAC uses non-uniform quantization
steps, it is of interest to understand if a relation similar

to (10) holds for non-uniform quantization steps. We an-
swered this question affirmatively by doing the following
experiment: For a set of MPEG audio test items (see sec-
tion ?? for a more detailed description of the test items),
we applied an AAC quantizer to compute a R

M - bit quan-
tization of the MDCT coefficients. Then, we computed
the ASNRdB

R as defined in [14]. Figure 1 shows the test
result for a typical MPEG audio test item: Statistically
the ASNRdB

R is a linear function of the ratio R
M with a

slope close to 6.02. This result was achieved consistently
over the set of considered MPEG audio test items. Thus,
we assume in the sequel that also for non-uniform quanti-
zation the ASNRdB

R can - statistically - be expressed as a
linear function of R

M as in (10).
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Fig. 1. The ASNRdB
R as a linear function of bits per sample R

M

We see from (5), (6), (9), and (10),

c(R− PE)
M

= ASNRdB
R −ASMRdB

= −10 log10

(
1
N

N∑

i=1

wid(si)

)
. (11)

Using (1) and (11), we express for fixed N, M, and PE the
average distortion ANMR(S) as a function of R, i.e., we
write ANMR(S) = DR, where

DR = 10
c(P E−R)

10M . (12)

C. An interpretation of the final Lagrangian multiplier
Λfinal.

We know from the theory of the Lagrangian multiplier
([4],[5],[11],[12]) that the negative slope of the distortion
rate function is equal to the final Lagrangian multiplier
ΛR

final, where R denotes the rate, i.e.,

−d DR

d R
= ΛR

final. (13)

Using (12), we write DR as follows:

DR = 10
cP E
10M 10

−cR
10M

=: 10
cP E
10M F (R). (14)
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As F (R) = e−R c ln 10
10M , there is

dF (R)
dR

= −F (R)
c ln 10
10M

. (15)

From (13), (14), and (15) we obtain the following estimate
for ΛR

final :

ΛR
final = c ln 10

10M × 10
c(P E−R)

10M . (16)

For a fixed value of R, and assuming that c is a positive
constant, we see from (16) that ΛR

final increases with in-
creasing PE. This can be intuitively explained as follows:
For increasing PE, the minimum number of bits needed by
the encoder to encode an audio sample increases, such that
the transmission rate tends to increase and potentially vi-
olates the rate constraint. However, for an unconstrained
cost function defined as in (5), if the transmission rate is
high, the value of Λ must be large in order to strongly pe-
nalize a violation of the rate constraint.sectionApplications
and Simulation results

D. Applications of the Fast Trellis Search

For practical applications, we note that the MPEG spec-
ification foresees a bit reservoir for the encoding process,
i.e., a reservoir of bits is provided to the encoder to encode
the content of a given audio file. Consequently, it is not
strictly necessary that the encoder meets the target rate for
all frames of an audio file, but it must ensure that it meets
the target rate on average over the whole file. Indeed, the
experiments presented in section III-E show that although
the rate constraint is violated by the Fast Trellis Search on
individual frames, it is met on average over all samples of
a typical audio file. This is due to the fact that the Fast
Trellis Search often finds solutions that require less trans-
mission bits than the target rate.

As another possible application, one could use the Λfinal

determined by formula (16) as an initial value for an iter-
ative Trellis Search that - due to the close guess of Λfinal

- would require significantly less iterations over Λ than a
Trellis Search that randomly picks an initial Λ value.

E. Simulation results

In this section, we apply the formula (16) to determine
the value of Λfinal and compare it with the actual experi-
mental value for Λ. For the experiments, we used the AAC
encoder in bit reservoir mode and used common MPEG
audio test samples. We compared the different methods
using ∼ 30000 audio frames, 43 SFBs, 60 SFs, and 12
HCBs. Our sample rate was 44100 Hz, we used a single
channel (mono), and we chose a rate of ∼ 32 kbps.

As the formula (10) - and so (16) - is only asymptotically
correct, we try to improve the accuracy of (16) by intro-
ducing an additional degree of variability into the relation
(16), and write

ΛR
final = c1 ln 10

10M × 10
c2P E−c3R

10M . (17)

In order to determine the values of the constants c1, c2

and c3, we execute the Trellis Search over a wide range of

values for N, M, PE, and R and determine Λfinal by itera-
tion over all initial Λ values. Taking the logarithm on both
sides of the formula (17), we use the experimental data to
determine the constants c1, c2 and c3 as a two-dimensional
least square problem. We obtain the values c1 = −9248.3,
c2 = 11.712, and c3 = 8.897. We see that the constants c1 -
c3 differ significantly from the value c = 6.02 in (10). This
can be expected as the relation (10) is only a very rough
approximation for non-uniform quantization. In order to
evaluate the formula (17) with the constant values chosen
as above, we compared the formula (17) with experimen-
tal values for Λfinal obtained by iterating over all initial Λ
values. Figure 2 shows that the actual values for Λfinal are
indeed very well approximated by the formula (17). Fig.
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3 shows that the distortions that are respectively achieved
susing the Fast Trellis Search, by estimating Λfinal using
formula (17), and the Trellis Search, by iterating over all
initial values of are nearly identical. Figure 4 shows that
the rate which is achieved by the Trellis Search using the
analytic Λfinal value violates the rate constraint in ∼ 30%
of all samples. However, the simulations also show that the
achieved transmission rate is always less than 10% above
the target rate. Also, the simulation results show that the
rate constraint is met on average which allows a deploy-
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TABLE I

Distortion relative to masking curve

Optimization technique Probab. that ANMR
is below masking curve

Two Loop Search 57%
(Fast) Trellis Search 86%
Optimal solution 93%

ment of the Fast Trellis Search in the bit reservoir mode.
We recall from [2], that the Trellis and thus - based on

the results from this section - also the Fast Trellis Search
is on average 10% above the optimum value. Whilst the
ANMR is an effective measure of ultimate performance of
the encoding process, the objective of perceptual compres-
sion is to achieve an ANMR that is satisfactory, regardless
of whether it is the best ANMR possible or not. In the
context of audio coding, an ANMR is widely considered
as satisfactory if it is below or at least not far above the
masking curve. The ANMR is below the masking curve if
ANMR < 1. Our experiments - see I - show that whereas
the TLS achieves an ANMR below the masking curve with
a probability of 57%, both the Trellis as well as the Fast
Trellis Search obtain ANMR values below the masking
curve with a probability of 86%, whereas the optimal so-
lutions, which we calculated using the algorithms in [2],
achieve such ANMR values with a probability of 93%.

The experiments show that the Trellis Search needs
about 2 seconds, whereas the Fast Trellis Search needs
about 80 ms to solve the ANMR problem. Currently, the
TLS is the only real-time method as it needs only several
milliseconds to solve the ANMR problem. However, in view
of the rapidly increasing capacity of commercial processors,
the Fast Trellis Search could soon be suitable for real-time
implementations. Optimal methods [2] are far too complex
for real-time implementations.

IV. Conclusions

This paper proposes a new method to solve the problem
of minimizing the average distortion subject to a constraint
on the total transmission rate for the MPEG4-AAC en-

coder. The Fast Trellis Search outperforms the Two Loop
Search as it finds ANMR values which on average are only
10% above the optimal values and are below the masking
curve with a probability of 86%. The simulations show
that when using the MPEG bit reservoir the Fast Trellis
Search and the Trellis Search achieve nearly identical dis-
tortions for each frame and the Fast Trellis Search meets
the rate constraint on average over the samples of an audio
file. Due to its low complexity, the Fast Trellis Search is a
promising technology for future AAC implementations.
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