
Distributed scheduling policies for networks of

switches with a configuration overhead

Claus Bauer

Dolby Laboratories, San Francisco, CA, 94103, USA,
cb@dolby.com

Abstract. Optical switching cores are fast gaining importance for de-
ployment in internet switches/routers. The reconfiguration of these switches
requires a large timely switching overhead. The design of efficient algo-
rithms that take into account the configuration overhead has been widely
researched. However, all previous research solely focuses on switching al-
gorithms that optimize the performance features of a single switch with
configuration overhead. This paper is the first which designs classes of
switching policies for a network of switches with a configuration overhead
that guarantee the stability of the network. We also show that networks
of switches with configuration overhead are stable if different classes of
policies are deployed at different switches simultaneously.

1 Introduction

The introduction of new optical transmission technologies such as Dense Wave-
length Division Multiplexing (DWDM) have dramatically increased the trans-
mission capacity of optical fibers. As a consequence, there is a need for switches
and routers that work at or above the speed of the high-speed optical links con-
necting them.
Today, most high-performance routers/switches use an electronic core that de-
ploys a Virtual Output Queueing Scheme and a crossbar switching core. It is not
expected that electronic switches will be able to meet the performance require-
ments imposed by future optical transmission capacities. Thus, optical switching
cores have increasingly gained importance. At this time, it is neither possible to
buffer packets in the optical domain nor to evaluate the packet header in the
optical domain. Therefore, most researchers ([7], [12])) propose hybrid electronic-
optical architectures: Packets that arrive on optical input links are converted
into an electric signal. The header evaluation and the eventual buffering are
performed in the electronic domain. In order to forward the packet through the
optical switching core, the packet is reconverted into the optical domain and
sent through the switch. If the switch uses output buffers, the packet is again re-
converted into electronics at the output, buffered electronically, and reconverted
into optics when it leaves the switch. Obviously, it is desirable to find ways to
perform the header evaluation and buffering in the optical domain in order to
save the numerous electronic-optical and optical-electronic conversions.
The MEMS technology is a favorite candidate for an optical switching core

1

2

([6],[13]). Compared to electronic switches, that reconfigure themselves in few
nanoseconds or less, the reconfiguration time of a MEMS based switch is typi-
cally quoted as being between 1 and 10 ms. Depending on the link speed, these
switches take up to 20,000 cell times to reconfigure. This long reconfiguration
time introduces large packet delays and requires scheduling algorithms that take
this configuration overhead into account and optimize the delay and loss char-
acteristics of the resulting schedule.
Recently, various researchers have proposed different scheduling algorithms for
switches for a configuration overhead. Two approaches can be distinguished:
In the Timeslot Assignment based approach ([9], [10], [15]), incoming traffic is
accumulated during a predefined accumulation period. During each cycle, the
arriving traffic is buffered in an N ×N traffic matrix. Using different algorithms,
the traffic matrix is decomposed into permutation matrices that determine the
configurations of the switch. The Single Scheduling approach ([10],[11]) can be
considered as a slow version of scheduling algorithms for switches without con-
figuration overhead. Similar to packet-based based scheduling ([14]), a schedule
is generated and maintained for several timeslots. Most approaches require the
switching core to work at a speedup S > 1 compared to the linkspeed.
Previous research on scheduling algorithms for switches with configuration over-
head has investigated scheduling algorithms that optimize the performance fea-
tures stability and delay for a single switch. So far, no research on scheduling
algorithms that stabilize networks of switches with a configuration overhead
has been performed. For switches without configuration overhead, it has been
shown in [3] for the example of a maximum weight matching algorithm ([7])
that scheduling algorithms that guarantee the stability of individual switches
do not necessarily guarantee the stability of networks of switches. Following the
argument in [3], it can be shown that the Single Scheduling LQF + holding
algorithm proposed in [10] can lead to instabilities in a network of switches with
configuration overhead.
For switches without configuration overhead, in [2] and [3], local scheduling algo-
rithms that stabilize networks of switches, but require signaling traffic between
adjacent switches have been proposed. Only recently, in [1] a scheduling algo-
rithm has been proposed that does not require signaling traffic, but stabilizes a
network of switches. This algorithm requires non-local information to be trans-
ported in the packet header.
This paper is the first effort to investigate local scheduling algorithms for net-
works of input-queued switches with a configuration overhead that stabilize the
entire network.
The rest of the paper is organized as follows. In the next section, we develop a
model for a network of switches. In section 3, we define local scheduling poli-
cies and prove the stability of networks that deploy any of those policies at all
switches. In section 4, we prove that networks of switches that deploy different
classes of these policies simultaneously at different switches of the network are
stable as well. We conclude in section 5.

3

2 Terminology and Model

2.1 Model of a network of queues

In this section, we follow an approach in [1] to describe our model of a queueing
system. We assume a system of J physical queues q̃j , 1 ≤ j ≤ J of infinite
capacity. Each physical queue consists of one or more logical queues, where each
logical queue corresponds to a certain class of customers within the physical
queue. Whenever a packet moves from one physical queue to another, it changes
class and therefore also changes logical queue. We denote a logical queue by
qk, 1 ≤ k ≤ K, where K ≥ J. A packet enters the network via an edge switch,
travels through a number of switches and leaves the network via another edge
switch. We define a function L(k) = j that defines the physical queue q̃j at
which packets belonging to the logical queue qk are buffered. The inverse function
L−1(j) returns the logical queues qk that belong to the physical queue q̃j .

Throughout this paper, the time t is described via a discrete, slotted time
model. Packets are supposed to be of fixed size and a timeslot is the time needed
by a packet to arrive completely at an input link.

We define a row vector Xn = (x1
n, ..., xK

n), where the k-th vector xk
n represents

the number of packets buffered in the logical queue qk in the n-th timeslot. We
define En = (e1

n, ..., eK
n), where ek

n equals the number of arrivals at the logical
queue qk in the n-th timeslot. Analogously, we define Dn = (d1

n, ..., dK
n), where

dk
n expresses the number of departed packets from qk in the n-th timeslot. Thus,

we can describe the dynamics of the system as follows:

Xn+1 = Xn + En − Dn. (1)

Packets that arrive at a logical queue qk either arrive from outside the system
or are forwarded from a queue within the system. Thus, we can write:

En = An + Tn,

where An = (a1
n, ..., aK

n) denotes the arrivals from outside the system and Tn =
(t1n, ..., tKn) denotes the arrivals from inside the system.
We define a routing matrix R = [ri,j], 1 ≤ i, j ≤ K, where ri,j is the fraction of
customers that depart from the logical queue qi and are destined for the logical
queue qj . Assuming a deterministic routing policy, there holds, ri,j ∈ {0, 1},

∑

1≤i<K

ri,j < 1,
∑

1≤j≤K

ri,j ≤ 1. We set ri,j 6= 0, if qj follows qi along the route.

Noting that Tn = DnR and writing I for the identity diagonal matrix, we find

Xn+1 = Xn + An − Dn(I − R). (2)

We assume that the external arrival processes are stationary and satisfy the
Strong Law of Large Numbers. Thus,

lim
n→∞

n
∑

i=1

Ai

n
= Λ w.p.1, (3)

4

where E[An] = Λ = (λ1, .., λK) ,∀n ≥ 11. Noting that (I−R)−1 = I+R+R2+...,
we find that the average workload W = (w1, ..., wK) at the logical queues qk is
given by W = Λ(I − R)−1.

Finally, we give a stability criteria for a network of queues as proposed in [2].
Definition 1: A system of queues is rate stable if

lim
n−→∞

Xn

n
= lim

n−→∞

1

n

n−1
∑

i=0

(Ei − Di) = 0 w.p.1.

A necessary condition for the rate stability of a system of queues is that the
average number of packets that arrive at any physical queue q̃j during a timeslot
is less than 1. We formalize this criteria as follows:

Definition 2: For a vector Z ∈ R
K , Z = (z1, .., zK), and the function L−1(k)

as defined in this subsection, we set:

||Z||maxL = max
j=1,..,J







∑

k∈L−1(j)

zk







. (4)

The necessary condition for rate stability can now be formalized as follows:

||W ||maxL < 1. (5)

2.2 Model of a network of switches

In this section, we apply the terminology of the previous section to a network of
switches. We assume that the switching core is an N ×N input-queued or com-
bined input/output-queued (IQ/CIOQ) switch that deploys a Virtual Output
Queue buffer structure ([7]. A network of IQ/CIOQ switches can be conceived
as a queueing system as defined in the previous section where the virtual out-
put queues are considered as the physical queues. In this model, we neglect the
output queues of the switches because instability can only occur at the Virtual
Output Queues (see [1]).

We say that packets that enter the network via the input of a given switch
and leave the network via the output of a given switch belong to the same flow.
Packets belonging to the same flow travel through the same sequence of physical
queues and are mapped to the same logical queues at each physical queue, i.e.,
a flow can be mapped biunivocally to a series of logical queues.

We assume that each logical queue behaves as a FIFO queue and assume
a per-flow scheduling scheme. It has been shown in [1] how stability results for
per-flow scheduling schemes can be used to design less complex and stable per-
virtual output queue schemes.

The network consists of B switches and each switch has Nb, 1 ≤ b ≤ B, in-
puts and outputs. If the total number of flows in the system is C, we do not have
more than N2

b physical queues and CN2
b logical queues at switch b. We can model

1 Throughout the paper, we abbreviate ”with probability 1” by ”w.p.1.”

5

the whole network of switches as a system of
∑

1≤b≤B

CN2
b logical queues. For the

sake of simplicity, we suppose that Nb = N, 1 ≤ b ≤ B and set K = CN2B. Fi-
nally, we define QI(b, i) as the set of indexes corresponding to the logical queues
at the i-th input of the b-switch. Analogously, QO(b, i) denotes the set of indexes
corresponding to the logical queues directed to the i-th output of the b-switch.
We use these definitions to adapt the norm ||Z||maxL to a network of switches:

Definition 3: Given a vector Z ∈ R
K , Z = {zk, k = CN2b + CNi + Cj +

l, 0 ≤ b < B, 0 ≤ i, j < N, 0 ≤ l < C, the norm ||Z||IO|| is defined as follows:

||Z||IO = max
b=1,..,B

i=1,..,N







∑

m∈QI(b,i)

|zm| ,
∑

m∈QO(b,i)

|zm|







.

As we assume a deterministic routing policy, the necessary condition for rate
stability given in (5) can be written for a network of switches as follows:

Definition 4: For a network of IQ/CIOQ switches, a traffic and routing
pattern W is admissible if and only if:

||W ||IO = ||Λ(I − R)−1|| < 1. (6)

In the rest of this paper, we will only consider traffic and routing patterns
that satisfy the condition (6). We will say that a network which is rate stable
under condition (6) achieves 100% throughput.

3 Local scheduling policies

3.1 Weight function

All scheduling policies introduced in this paper are matching policies. Any
matching policy is defined relative to a specific weight. For the definition of
the weights, we will make use of a family of real positive functions fk(x) : N →
R, 1 ≤ k ≤ K, that satisfy the following property:

lim
n→∞

fk(n)

n
=

1

wk
w.p.1. (7)

We define d
k
(n) =

∑

m≤n

dk
m as the cumulative number of services at queue qk up

to time n. We define the weights of the queues qks at time n by

φk
n = n − fk(d

k
(n)) Φn = (φ1

n, .., φK
n). (8)

In [2], an example for fk(n) is given. The cumulative function of external ar-
rivals for the logical queue qk is given by ak(n) =

∑

m≤n

ak
m. The inverse function

[ak]−1(p) maps the packet number p to the arrival slot. Setting fk(p) = [ak]−1(p),
the weight φk

n = n − [ak]−1(p) denotes the time the packet has already spent in

the network. At its departure time n, the age of the p-th packet is n− [ak]−1(d
k

n).

6

3.2 The fluid methodology

The main proof of this section will make use of the fluid methodology as in-
troduced in [4], [5]. As in [1], we consider an extension of the fluid model to a
network of switches. First, we define three vectors: X(t) = (X1,1(t), ...,XN,N (t))
denotes the number of packets in the V OQs at time t, D = (D1,1(t), ...,DN,N (t))
denotes the number of packet departures from the V OQs until time t and
A = (A1,1(t), ..., AN,N (t)) denotes the number of packet arrivals at the V OQs
until time t. We define Π = {π} as the set of all possible network-wide matchings
and denote a specific scheduling algorithm by S. For all π ∈ Π, we denote by
TS

π (t) the cumulative amount of time that the matching π has been used up to
time t by the algorithm S. Obviously, T S

π (0) = 0 ∀π ∈ Π. Using (2), we obtain
the fluid equations of the system as follows:

X(t) = X(0) + Λt − D(t)(I − R), (9)

D(t) =
∑

π∈Π

πTS
π (t), (10)

∑

π∈Π

TS
π (t) = t. (11)

The first two equations model the evolution of the logical queues, whereas the
third counts the total number of departures from the V OQs. The third equation
reflects the fact that in each timeslot, each input is connected to some output.

3.3 Maximum weight matching policies

In this section, we define a class of maximum weight matching policies that
guarantee the stability of a network of IQ/CIOQ switches with configuration
overhead. We introduce a set of functions G as follows:
Definition A real function F is said to belong to the set G if
a) Ḟ(x) exists for all x > 0.
b) F and Ḟ(x) are strictly monotonically increasing, non-negative and F(′) = ′,
Ḟ(0) = 0.
c) Ḟ satisfies a Lipschitz condition: ∃CF s.t. |Ḟ(x)−Ḟ(y)| ≤ CF |x−y|, ∀x, y ∈ R.
Using the fluid methodology, we define a function Φ(t) based on the definition
of the function Φn in (8). We set

F(Φ(t)) =

K
∑

k=1

F(φk(t)).

We define Γ = [γ(i,j)] as the diagonal matrix with γ(k,k) = wk, and let Γ−1 be
the inverse of Γ. Further, we write the scalar product for two vectors v1 and v2

as 〈v1, v2〉 = v1v
T
2 . Following an idea in [1], we first define a scheduling policy

for input-queued switches without configuration overhead. For every function

7

F ∈ G, we define a scheduling algorithm MWMF as follows. At each time t, the
scheduling algorithm MWMF chooses the schedule πF which is defined as:

πF (t) = arg max
π

{

〈π, Ḟ(φ(t))〉
}

. (12)

For fixed F , we denote the value of the matching achieved by MWMF as M(t) =
〈πF (t), Ḟ(φ(t))〉. Using this terminology, we now define a class of scheduling
policies MWMF

c for switches with configuration overhead. As shown in fig. 1,
a switch operates in cycles of constant length. Each cycle consists of a configu-

 Cycle Cycle Cycle

z
a

z
b

z
a

z
b

z
a

z
b

 Cycle Cycle Cycle

Configuration Forwarding
Time

 Cycle

Fig. 1. Operation mode of the MWM
F

c
algorithm

ration phase of length za-timeslots, during which the switch is reconfigured and
no packets are forwarded, and a forwarding phase of length zb timelslots, during
which the switch configuration remains unchanged and packets are forwarded.
Scheduling decisions are made according to the policy MWMF at instants tn,
where tn+1 − tn = za + zb. The chosen schedule πF (tn) is kept constant during
the interval [tn + za, tn+1[. We set

Mc(t) = 〈πF (tn), Ḟ(φ(t))〉 for t ∈ [tn, tn+1[. (13)

Now, we can formulate the main result of this section:
Theorem 1: For any function F ∈ G, a network of IQ/CIOQ switches with

configuration overhead that implements a MWMF
c −policy, in which the weight

φk
n of queue qk at time n is defined as in (8) , and which deploys a speedup

S ≥
⌈

za+zb

zb

⌉

achieves 100% throughput.

3.4 Proof of theorem 1

Before proving the theorem, we introduce the notion of a MWMF
m schedul-

ing policy for switches without configuration overhead. We define the MWMF
m

scheduling policy as the scheduling policy that applies an m − timeslots old
matching of the MWMF scheduling policy to configure the switch: If we set
πF

m(t) = πF (t − m), then the MWMF
m policy calculates the match: Mm(t) =

〈πF
m(t), Ḟ(Φ(t))〉. We set Πm,F (t) = {π

′

: 〈π
′

, Ḟ(Φ(t))〉 = max
π

〈π, Ḟ(φ(t−m))〉},

and follow an argument in [4] to derive from (11):

∑

π∈Πm,F (t)

Ṫ
MWMF

m
π (t) = 1. (14)

8

Lemma 1

Mm(t) ≥ M(t) − C(W,m), (15)

where C(W,m) is a constant that depends on m and the matrix W.

Proof: We note that by (7) lim
t→∞

fk(t) → t/wk, and that d
k
(t) → ∞ for

t → ∞. Thus

φk(t) → t −
d

k
(t)

wk
, (16)

and

|φk(t + m) − φk(t)| ≤ m

(

1 +
1

wk

)

=: C(W,m), (17)

From (17) and the Lipschitz condition of the function Ḟ , we obtain 〈πF
m(t), Ḟ(Φ(t))〉 ≥

〈πF
m(t), Ḟ(Φ(t−m))〉−KCFC(W,m), and 〈πF (t), Ḟ(Φ(t−m))〉 ≥ 〈πF (t), Ḟ(Φ(t))〉−

KCFC(W,m). Further, by (12) 〈πF
m(t), Ḟ(Φ(t − m))〉 ≥ 〈πF (t), Ḟ(Φ(t − m))〉.

Combining the estimates, the lemma follows with C(W,m) =: 2KCFC(W,m).
We note that by (13) and lemma 1,

Mc(t) ≥ M(t) − C(W, za + zb). (18)

For technical reasons, we first prove theorem 1 for the case za = 0 and then show
the general case za > 0. We define the Lyapunov function: G(t) = 〈I,F1(Φ(t))〉,
where F1(x) = ΓF(x). By (16),

Φ̇(t) = I − Ḋ(t)Γ−1. (19)

We want to show that for an absolute constant B > 0 there is ∀t ≥ 0,

||Φ(t)||1 ≤ B, (20)

where || ||1 denotes the L1 norm. Noting that G(0) ≥ 0, we see that if

d

dt
G(t) ≤ 0 (21)

∀t such that 〈I, Φ(t)〉 ≥ K0 for a fixed K0 > 0, then ∀t ≥ 0, there holds G(t) ≤
max
L∈RK ,

〈I,L〉≤K0

〈1, Ḟ(L)〉, which in turn implies (20) for a certain B > 0. Thus, we derive

(21), from (10), (14), (18), and (19):

d

dt
G(t) = 〈1, Ḟ1(Φ(t))Φ̇(t)〉

= 〈1, Γ Ḟ(Φ(t))〉(I − Ḋ(t)Γ−1) = 〈1, Ḟ(Φ(t))(Γ − Ḋ(t))

= 〈Γ, Ḟ(Φ(t)〉 −
∑

π∈Πza+zb,F (t)

Ṫ
MWMF

za+zb
π 〈πza+zb

(t), ˙F(Φ(t))〉

≤ 〈Γ, Ḟ(Φ(t)〉 − 〈πF (t), Ḟ(Φ(t))〉 + C(W, za + zb). (22)

9

As by (6),||W ||IO < 1, we argue as in [7] to find a W1 satisfying ||W1||IO < 1
and W ≤ (1 − ǫ)W1 for ǫ > 0. We define Γ1 based on W1 analogously to Γ . We
know from [7] that (12) implies 〈Γ1, Ḟ(Φ(t))〉 < 〈π(t), Ḟ(Φ(t))〉. Thus, by (22):

d

dt
G(t) ≤ 〈Γ1, Ḟ(Φ(t))〉 − 〈π(t), Ḟ(Φ(t))〉 − ǫ〈Γ1, Ḟ(Φ(t)〉 + C(W, za + zb)

≤ −ǫ min
1≤k≤K

wk>0

wk max
1≤k≤K

Ḟ(φk(t)) + C(W, za + zb).

As Ḟ was supposed to be non-negative and strictly monotonically increasing,

(21) follows. The relations (16) and(20) implies that: 0 < t − d
k
(t)

wk + C ≤ B.

Whence, limt→∞
d

k
(t)
t

= wk, i.e., limt→∞
D(t)

t
= W, w.p.1, which corresponds

to the rate stability condition for X(t).
Following an argument in [14], we now treat the general case za > 0. For any
switch that operates with a speedup S and has a configuration period of length
za = 0, the equation (11) changes to

∑

π∈Π

TF
π (t) = St. (23)

As for the MWMF
c policy a fraction za

za+zb
of the bandwidth is lost during the

configuration phase, we adjust the RHS of (23) by a factor of zb

za+zb
and obtain

the equality
∑

π∈Π

TF
π (t) = S zb

za+zb
t. Differentiating this equation, we follow an

argument in [4] as in the derivation of (14), and find that for S > za + zb/zb,

∑

π∈Πza+zb,F (t)

Ṫ
MWMF

za+zb
π (t) = S

zb

za + zb

> 1. (24)

Arguing as for za = 0 with (24) instead of (14), the theorem follows for za > 0.

4 Networks of switches that deploy different scheduling

policies

In the previous section, we introduced scheduling policies for networks that pro-
vide stability for a network of switches where all switches implement the same
scheduling policy. Here we prove that a network of switches in which each switch
deploys any of those policies also achieves 100 % throughput.
Theorem 2 A network of IQ/CIOQ switches with configuration overhead where
each switch deploys any MWMF

c policy, F ∈ G, in which the weight is defined

as in (8), and which deploys a speedup S ≥
⌈

za+zb

zb

⌉

achieves 100% throughput.

Proof: We divide the switches in the network into M groups Gi, i ∈ {1, ..,M}
where Gi contains the switches that deploy the switching policy MWMFi

c . Ac-
cordingly, we can divide the departure vector D(t) and the arrival rate vector W
in M subvectors, i.e., we write D(t) = (D1(t), ..,DM (t)) and W = (W1, ..,WM).

10

In order to prove rate stability, it is obviously sufficient to show that ∀i ∈

{1, ..,M}, limt→∞
Di(t)

t
= Wi, w.p.1. This relation can be proved by applying

the proof of theorem 1 to each group of switches Gi separately.

5 Conclusions

This paper investigates scheduling policies for networks of switches with a con-
figuration overhead. It proposes a class of switching policies that are based on
maximum weight matchings. It is shown that network of switches that deploy
either one or any mixture of those policies with a speedup of S ≥ ⌈ za+zb

zb
⌉ achieve

100% throughput.

References

1. Ajmone, M.,Giaccone, P., Leonardi, E., Mellia, M., Neri, F., Local scheduling poli-

cies in networks of packet switches with input queues, Proc. of Infocom 2003, San
Francisco, April 2003.

2. Ajmone, M.,Leonardi, E., Mellia, M., Neri, F., On the throughput achievable by

isolated and interconnected input-queued switches under multicalss traffic, Proc. of
Infocom 2002, New York City, June 2002.

3. Andrews, M., Zhang, L., Achieving stability in networks of input queued, Proc. of
Infocom 2001, Anchorage, Alaska, April 2001.

4. Dai, J.G., Prabhakar, B., The throughput of data switches with and without speedup,

Proc. of IEEE Infocom 2000, Tel Aviv.
5. Dai, J.G., Stability of fluid and stochastic processing networks, Miscellanea

publication n.9, Centre for Mathematical Physics and Stochastic, Denmark
(http://www.maphysto.dk), Jan. 9.

6. Lin, L.Y., Micromachined free-space matrix switches with submillisecond switching

time for large-scale optical crossconnect, OFC Tech. Digest, 1998.
7. Keslassy, I., McKeown, N., Achieving 100% throughput in an input queued switch,

IEEE Transactions on Communications, vol. 47, no. 8, Aug. 1999, 1260 - 1272.
8. Keslassy, Chuang, S.T., Yu, K., Miller, d., Horowitz, M., Solgaard, M., McKeown,

N., Scaling Internet Routers Using Optics, Proc. of ACM SIGCOMM, Karlsruhe,
Germany, Aug. 2003.

9. Li, X., Hamdi, M., λ-adjust algorithm for optical switches with reconfiguration

delay, Proc. of ICC’03, Anchorage, Alaska, May 2003. New York City, June 2002.
10. Li, X., Hamdi, M., Design and analysis of scheduling algorithms for switches

with reconfiguration overhead, Proc. of High Performance Switching and Routing
(HPSR’03), Torino, Italy. June 2003.

11. Li, X., Hamdi, M., Analysis of reduced rate scheduling for switches with reconfigu-

ration overhead, Proc. of Global Communications Conference (Globecom’03), San
Francisco, Dec. 2003.

12. McKeown, N., Optics inside Routers, Proc. of ECOC 2003, Rimini, Italy, Septem-
ber 2003.

13. A. Neukermans and R. Ramaswami, MEMS Technology for Optical Networking

Applications, IEEE Communications Magazine January 2001, p.62 - 69.
14. Shah, D, Gangali, Y., Keshavarzian, A., Input-queued switches: Cell switching ver-

sus packet switching, Proc. of IEEE Infocom 2003, San Francisco. April 2003.
15. Towles, B., Dally, W.J., Guaranteed scheduling for switches with configuration over-

head, Proc. of Infocom 2002, New York City, June 2002.

