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ABSTRACT

In this paper, we study the collision property of one of the

robust hash functions proposed in [1]. This method was orig-

inally proposed for robust hash generation from blocks of

image data and is based on projection of image block data

on pseudo-random matrices. We show that collision perfor-

mance of this robust hash function is not optimal when used

to extract hash bits from a moment invariants feature matrix

for video fingerprinting. We identify that the collision perfor-

mance of this hash extraction method could be improved if

the pseudo-random matrices are selected carefully. We pro-

pose two methods that use an offline training set to improve

the collision property. Both of the methods attempt to select

the matrices that minimize cross-correlation among the pro-

jected features. The first method uses an iterative procedure

to select the matrices that satisfy a cross-correlation thresh-

old. The second method used Singular Value Decomposition

(SVD) of the feature covariance matrix and hence the cross-

correlation of the projected values is zero. We show the im-

proved collision performance of both these methods on the

same dataset. Also, we interpret the projection matrices ob-

tained through the SVD procedure and show that they capture

appearance and motion information from the moment invari-

ants feature matrix.
Index Terms— Robust Visual Hash, Scalable Finger-

printing

1. INTRODUCTION
A Media fingerprint extraction method generally has the fol-

lowing two steps: (i)Robust Feature Extraction (ii)Robust

Hash Extraction. The first step ensures that features that

are representative of underlying perceptual content and also

invariant under various processing operations, are extracted.

The second step ensures that such features are converted into

signature bits in a robust fashion i.e small changes in fea-

ture values do not result in drastic changes in extracted hash

bits i.e for every (x ∼ y), H(x) ∼ H(y) with very high

probability. (Here ∼ denotes similarity). This requirement

disqualifies the use of normal cryptographic hash functions to

convert the feature values into signature bits. The second step

also serves to provide a compact representation of the fea-

tures so that these signature bits can be stored and searched

efficiently. Another property that is important for this robust

hash extraction step is the collision property. A robust hash

function is said to have good collision property if for every

(x �= y), H(x) �= H(y) with very high probability.

Consider a content identification application with a large

database of media fingerprints. Any media fingerprint that is

extracted from query media is compared against this database

of media fingerprints during identification. As the size of

database in terms of number of hours of media increases, it

is desirable that the uniqueness of fingerprint codewords is

not reduced. The uniqueness property of the fingerprint code-

words would make the fingerprint database scale to a larger

number of hours. Instead if certain fingerprint codewords

are more likely to occur than others, then as the database

size grows the uniqueness reduces. This results in more

computations to perform the matching. To see this, let us

consider a hash-table based searching method for matching

the query fingerprints against the fingerprints in the database.

The database is indexed using the individual fingerprint code-

words. Each fingerprint codeword in the hash table links to

the location in a fingerprint file/media where that fingerprint

codeword is present. The number of links per fingerprint

index in the hash table will be referred to as number of col-

lisions. If a fingerprint codeword is unique, one can quickly

find its match in the database. As the uniqueness reduces,

one has to perform more look-ups and pick the best match in

terms of smallest distance from the query fingerprint. Thus,

the fingerprints that have a small number of average colli-

sions per fingerprint codeword will result in shorter search

duration. Such fingerprints are scalable for searching through

a larger database of fingerprints than fingerprints for which

the average number of collisions is higher.

In this paper, we study the collision property of one of

the robust hash functions proposed in [1]. This method was

originally proposed for robust hash generation from blocks

of image data and is based on projection of image data on

pseudo-random matrices. We had used this hash bit extrac-

tion procedure for extracting hash bits from robust features

for video fingerprinting in [2]. We first show that the colli-

sion performance is not optimal if the pseudo-random matri-

ces are not selected carefully. We propose two methods that

use an offline training set to improve the collision property

of this robust hash extraction method. Both of the methods

attempt to select the matrices that de-correlate the projected
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features. The first method uses an iterative procedure to select

the matrices and the second method used Singular Value De-

composition (SVD) of the feature covariance. We show the

improved collision performance of both these methods on the

same dataset. Also, we interpret the projection matrices ob-

tained through the SVD procedure and show that they capture

appearance and motion information from the moment invari-

ants feature matrix.

2. PROPOSED METHOD
2.1. Motivation
The first step in media fingerprint extraction is to extract ro-

bust features from audio and video that are invariant to var-

ious processing operations on the content. Let us represent

the extracted robust features by a matrix Q. For all the exper-

iments in this paper, Q is a matrix with G × N elements that

attempts to capture appearance and motion information from

the input video. The input video is first temporally downsam-

pled to 12 fps. Then, every frame is spatially downsampled

to 120 ∗ 160 (Height×Width) resolution after letterbox de-

tection and removal. The N columns in the feature matrix Q

correspond to N video frames in a buffer including the current

frame. We use a buffer of 3s (N = 12× 3) to capture motion

information. The G rows correspond to a set moment invari-

ants extracted from each frame in the buffer. We extract 7
moment invariants from 5 concentric circular regions in each

frame (G = 5×7). Moment invariants are global measures of

an image surface that are invariant to translation, rotation and

scaling and were originally proposed for text pattern recog-

nition in [3]. Now, each column of the matrix Q attempts to

capture the appearance of the corresponding frame of video in

the buffer by measuring how the 7 moment invariants change

over the 5 regions. The second step is to extract hash bits from

the feature matrix Q using a robust hash function.

In [1] proposed one such robust hash bit extraction pro-

cedure from blocks of image data. Given an image block B,

the following steps are performed to extract robust hash bits.

Using a secret key K the method generates N random ma-

trices with entries uniformly distributed in the interval [0, 1].
Then, a low-pass filter is repeatedly applied to each random

matrix to obtain L random smooth patterns. All patterns are

then made DC-free by subtracting the mean from each pat-

tern. Considering the block and the pattern as vectors, the

image block B is projected on each pattern Pi , i = 1, 2, ...L
and the projected value is compared with a threshold Th to

obtain L bits bi. If B.Pi < Th, then bi = 0 else bi = 1.

We applied this method of robust hash bit extraction for

the moment invariants based feature matrix Q described ear-

lier and studied collision property. We extracted 36 bit fin-

gerprint codewords from a 25 min video clip at 12 fps. Let

us denote this collection of fingerprint codewords using S.

We computed the average number of collisions per fingerprint

codeword for this collection of codewords (S). The average

number of collisions was found to be 3.59. Then, we added

about 3 hrs of fingerprint codewords extracted from unique

content that is not related to this 25 min clip. Again, we com-

pute the average number of collisions per codeword in the

set S. Now, the average number of collisions for this dataset

increased to 7.37. Ideally, the average number of collisions

should remain unchanged after the inclusion of fingerprint

codewords from unrelated content. However, it did not re-

main the same. This means that the collision property (i.e.

for every (x �= y), H(x) �= H(y) with very high probability)

is not optimal for this hash function. In the following two sub-

sections, we describe the two proposed methods to improves

the collision property of robust hash in [1] by selecting the

projection matrices Pi (i = 1, 2...L) carefully.

2.2. Iterative Procedure for Selecting Random Matri-
ces:iter
This procedure is motivated by the fact that the pseudo-

random matrices P1, P2, ..PL should capture different as-

pects of the feature matrix Q through their corresponding

projections H1,H2, ...HL. Instead if the information they

capture about the feature matrix Q is correlated, then certain

hash bits would tend to vary together. This means that certain

codewords are more likely than others. The following are the

steps to choose the L pseudo-random matrices:

Step 1: Obtain a training dataset of media content and ex-

tract robust features Q1, Q2, ...QM . Here M is the number of

training instances for selecting the pseudo-random matrices.

Step 2: Initialize iteration index j = 1 and a corre-

sponding set of pseudo-random matrices for this iteration

P1,j , P2,j , ...PL,j

Step 3: Project each Qi onto P1,j , P2,j , ...PL,j to obtain

the projected values Hi
1,j ,H

i
2,j , ...H

i
L,j , i = 1, 2...M . We

would like each of pseudo-random matrices to capture dif-

ferent aspects of the feature matrix. Therefore, we should

select a set of pseudo-random matrices whose projections

Hi
1,j , H

i
2,j , ...H

i
L,j have low correlation among themselves.

In the following step, we compute the cross-correlation ma-

trix C of the projected values using the training set containing

M instances of the feature matrix Q.

Step 4: The entries of the cross-correlation matrix C are

computed as given below

Cj(k, l) =
1
M

∑M
i=1(H

i
k,j − E(Hk,j))(Hi

l,j − E(Hl,j))√
σk,j

√
σl,j

E(Hk,j) =
1
M

M∑

i=1

Hi
k,j

σk,j =
1
M

M∑

i=1

(Hi
k,j − E(Hk,j))2

Here Cj(k, l) represents the cross correlation coefficient

between the projected values Hk,j and Hl,j for jth set of

pseudo-random matrices and k, l, n = 1, 2...L. E(Hk,j))
and σk,j represent the mean and variance of Hk,j estimated
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from this training set. Note that the cross-correlation matrix

is a matrix of dimension L × L whose main diagonal ele-

ments are equal to the value 1.0. Once we have computed

the cross-correlation matrix in this manner, we select pseudo-

random matrices for which the cross-correlation of projec-

tions with other pseudo-random matrices is smaller than a

chosen threshold.

Step 5: After we have selected random matrices that meet

our criteria, we replace the matrices that did not meet our cri-

teria with new ones and proceed with the next iteration.

Step 6: We continue the iterations until we find all L

pseudo-random matrices that capture different aspects of the

feature matrix. The cross-correlation matrix after the last iter-

ation would have all terms less than the chosen threshold (say

0.2) except for the main diagonal elements.

2.3. SVD based Selection of Projection Matrices:svd
In the previous subsection, we described an iterative proce-

dure to design the L pseudo-random matrices P1, P2, ..PL.

These pseudo-random matrices ensure that the cross-correlation

coefficient between any two projected values (C(k, l)) is

smaller than a chosen threshold (say 0.2). Here C(k, l) repre-

sents the cross-correlation between Hk (projection of Q onto

Pk) and Hl (projection of Q onto Pl). In this section, we

describe a method that designs L matrices φ1, φ2, ...φL such

that the cross-correlation between any two projected values

(Csvd(k, l)) is equal to zero. Here Csvd(k, l) represents the

cross-correlation between Hsvd
k (projection of Q onto φk) and

Hsvd
l (projection of Q onto φl). The matrices φ1, φ2, ...φL

are the eigenvectors of the covariance matrix of the feature

values from the training set.

Step 1: Obtain a training dataset of media content and

extract robust features Q1, Q2, ...QM . Here M is the number

of training instances. Let the dimension of each feature matrix

Qi be R = G × N .

Step 2: Then, we compute the covariance matrix Cfeat

(dimension R*R) of the features from the training set

Q1, Q2, ...QM as given by Cfeat(k, l) = 1
M

∑M
i=1(Q

i
k −

E(Qk))(Qi
l − E(Ql)). Here E(Qk) = 1

M

∑M
i=1 Qi

k and

k, l = 1, 2...R.

Step 3: Once we compute the covariance matrix of the

features from the training set, we compute the eigenvectors

of the matrix Cfeat that satisfy the relation, V −1CfeatV =
D, using PCA (Principal Components Analysis). Here the

columns of V (dimension R*R) are the eigenvectors of the

covariance matrix Cfeat and are represented as φ1, φ2, ...φR.

D is a diagonal matrix with eigenvalues (E1, E2...ER) as its

main diagonal elements and zero elsewhere.

Thus, we can now transform any input feature vector

Q to a L dimensional space by projecting it onto the first

L eigenvectors φ1, φ2, ...φL to obtain Hsvd
1 ,Hsvd

2 , Hsvd
L

respectively. Here Hsvd
k is the projection of Q onto φk.

Now the cross-correlation between any two projected values

(Csvd(k, l)) is guaranteed to be equal to zero.

Unlike the iterative procedure in the previous section, we

obtain the φ1, φ2, ...φL by directly computing the eigenvec-

tors of the feature covariance matrix, Cfeat. φ1, φ2, ...φL are

pairwise orthogonal i.e (< φi.φj >= 0 i �= j) whereas Pi.Pj

need not to identically equal to 0 for i �= j. Also, the elements

of Pi are uniformly distributed between random numbers be-

tween -0.5 and 0.5 whereas the elements of φi are obtained

in a data-driven fashion and are not drawn from a specific

distribution. In the case of the projections obtained from pro-

jecting Q onto φ1, φ2, ...φL (Hsvd
1 , Hsvd

2 , ...Hsvd
L ), there is

an inherent order of significant projections that corresponds

to the significance of the basis functions (φ1 more signifi-

cant than φ2 , φ2 more significant than phi3 ...so on). This

means that one could derive varying number of fingerprint

bits from each of the projections Hsvd
1 , Hsvd

2 , ...Hsvd
L . Ob-

viously, one would like to derive more number of bits from

Hsvd
1 than from Hsvd

L . In the case of projections obtained

from projecting Q onto P1, P2, ..PL, there is no specific order

of significance and therefore we usually derive equal number

of bits from each of the projected values H1, H2, ...HL.

3. EXPERIMENTAL RESULTS

In this section, we present experimental results on collision

performance of the iterative procedure as well as the SVD

based procedure for selecting the projection matrices. The

feature matrix Q for all experiments in this paper is a matrix

of dimensions 35 × 36 (G × N ) where 36 corresponds to a

3s buffer of frames at 12fps and 35 corresponds to the 7 mo-

ment invariants computed from 5 concentric circular regions

of each frame in the buffer. First, we extract 22 bit fingerprint

codewords (L = 22) from a 25 min video clip using three sets

of projection matrices: (i) pseudo-random matrices (no-opt)
(ii) pseudo-random matrices selected using the iterative pro-

cedure (iter)(iii) projection matrices selected using the SVD

procedure (svd). For selecting the projection matrices in case

of (ii) and (iii), we used the same offline training set of 3 hrs

of content. In the case of (i), the pseudo-random matrices are

not selected carefully using either procedure proposed in this

paper and this method acts as a baseline method. In the case

of (ii), the pseudo-random matrices were selected ensuring

that the cross-correlation between the projected values is al-

ways less than 0.2. Let us denote the collection of fingerprint

codewords extracted from the 25 min clip using projection

matrices from (i) as Sno−opt. And let those extracted using

projection matrices from (ii) be denoted as Siter and those

extracted using projection matrices from (iii) be denoted as

Ssvd. Then, we compute the average number of collisions

for the fingerprint codewords in each of the three sets namely

Sno−opt,Siter and Ssvd.

In order to study the collision performance of these

three sets, first, we add fingerprint codewords extracted from

unique content (content that is unrelated to the 25 min clip) to

the database. Then, we compute the average number of colli-

sions as we increase the number of fingerprint codewords of
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unrelated content from 1 hr to upto 3hrs. Ideally, there should

be no change in the average of number of collisions as we

add unrelated content to the database. Figure 1(a) illustrates

the collision performance for the three sets of projection

matrices. The average of number of collisions for Sno−opt

increases from 3.59 to 7.37 as we add fingerprint codewords

from 3hrs of unrelated content. On the otherhand, the average

number of collisions for Siter increases from 2.76 to 3.03 for

the same increase in number of fingerprint codewords from

unrelated content. The average number of collisions for Ssvd

increases from 6.23 to 6.40. The projection matrices obtained

through the SVD procedure have the smallest slope (smallest

increase in average number of collisions for inclusion of an

hour of unrelated content) among the three sets of projection

matrices. This is as expected because the SVD procedure

ensures that the cross-correlation between the projected val-

ues is zero. The iterative procedure only ensures that the

cross-correlation is always less than 0.2. Figure 1(b) shows

the increase in the average number of collisions for every

additional hour of unrelated content included. The slopes for

Sno−opt,Siter and Ssvd are 1.5,0.1 and 0.05 respectively.
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Fig. 1. (a) Avg. num of collisions vs num hrs of unrelated

content (b)increase in Avg. num of collisions vs num hrs of

unrelated content;

Figure 2 shows the first 8 projection matrices obtained

through the SVD procedure. Each of the projection matrices

are of the same dimension as the feature matrix Q (35 × 36).

Recall that the number of rows correspond to 5×7 moment in-

variants extracted from each frame in the buffer and the num-

ber of columns correspond to the number of frames in the

3s buffer (3 × 12). Projection matrices 1 & 3 (on the top &

bottom left of Figure 2(a)) can be interpreted as those cap-

turing appearance information alone from the feature matrix

Q. This is so because the values along the columns of the

projection matrices 1 & 3 are similar for every row. Also,

note that the patterns along rows are repeated 5 times. This

is so because the 7 moment invariants computed from the 5
concentric circular regions are correlated and hence the pro-

jection matrix values are also correlated. The other projection

matrices shown in the Figure 2 capture both appearance and

motion information as can be seen from the changing patterns

across the columns (time) for these projection matrices.
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Fig. 2. (a) Projection matrices 1-4 from SVD procedure (b)

Projection matrices 5-8 from SVD procedure;

4. CONCLUSION
In this paper, we have shown that the collision performance

of the robust hash function proposed in [1] is not optimal for

extracting hash bits from moment invariants based video fin-

gerprint extraction. The robust hash function proposed in [1]

is based on projection of the features onto a set of pseudo-

random matrices. We propose two methods to improve the

collision performance of this robust hash function by care-

fully selecting a set of projection matrices that minimize the

cross-correlation between projected values. Both of the pro-

posed methods design the projection matrices using a train-

ing dataset offline. One method is based on a iterative proce-

dure that selects pseudo-random matrices that satisfy a cross-

correlation threshold. Another method is based on the SVD of

the feature covariance matrix and hence the cross-correlation

between the projected values is set to zero. We showed that

both of the proposed methods improved the collision perfor-

mance when compared to an approach that does not carefully

select the projection matrices. We also interpret the projec-

tion matrices obtained through the SVD procedure and show

that they capture appearance and motion information from the

moment invariants feature matrix. Also, the SVD based pro-

cedure outperformed the iterative procedure both in terms of

average number of collisions and training time to select the

projection matrices.
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