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ON THE EXCEPTIONAL SET FOR THE SUM OF A PRIME
AND THE :-TH POWER OF A PRIME

C. BAUER

1. Introduction

[t is well known from the work of Montgomery and Vaughan that the
exceptional set E(z) for the binary Goldbach conjecture, i.e. the set of
even numbers not larger than a real number z which are not representable
as the sum of two primes, can be estimated by FE(z) < 2'~% for a 6§ > 0.
Brimner, Perelli, Pintz [1] and later Zaccagnini [14] applied the method of
Montgomery and Vaughan to the problem of the representation of a positive
integer as the sum of a prime and the &-th power of a natural number. They
obtained an estimate for the corresponding exceptional set comparable to
the one of Montgomery and Vaughan. In this paper we improve, for even
integers satisfying certain congruence conditions, upon their result by giving
the following theorem:

THEOREM. Lei
Ep(z)=|n:nZz, 2n, n #1{modp)Vp>2 with p— 1}k,

s ’ "
n#py +py Vpy,pa € P,

where P denotes the sel of primes. Then there exists an effectively com-
putable constant © = O(k) such thal :

Ep(z) <, 279,

After this article had been written, the author became aware that in a
still unpublished work Liu and Shung [7] have also proved the above theorem.
Even though both works are based on the circle method, we feel that our work

1891 Mathematics Subject Classificetion. Primary 11L07; Secondary 11P32.
Key words and phroses. Additive prime number theory, Goldbach conjecture.

This article forms a part of the author’s doctoral dissertation submitted to Professor
Dr. D Wolke from the Department of Mathematics at the University of Freiburg, Germany.

During the preparation of this article the author was holding a common scholarship
by the Chinese State Education Commission and the German Academic Exchange Service
(DAAD).

0081-69G6/9¢/8 5.00 @1999 Akadémied Kiedd, Budapest



292 C. BAUER

is still of interest because our method differs essentiaily from the method
used in [7]. We basically apply the method of [1] and [14] to our problem,
whereas Liu and Shung use a method developed in [8]. Where we appeal
o the lemmas 4.6-4.9 in order to calcutate the contribution of the intervals
over the major arcs, Liu and Shung apply a completely different technique
of the Lemmas 3.1 to 3.4 i [§]. Farthermore, in their Lemima 4.6 they make
use of Jordan’s theorem on Dirichlet’s integral which makes it necessary to
extend the integration over the major arcs to infinity. Here, instead, we
proceed differently by calculating precisely the effect of the - 'Lalua’ed YETOS
(defined below).

2. Notation

To a certain extent we follow the notation and the structure of the proof
in [14]. We define: e(z) = ¢*™*; x is a sufficiently large real number, p denotes
a prime number, 8 = o + 44 is a complex number, g = -y denotes the
generic zeros of the L-functions. By x(= x4), x* (= x3), xo(= Xxo,4) we denote
a character, a primitive character and a principal character {modulo ¢),
respeciively, whereas ¥ mod g +— x*mod ¢* indicates that the character y is
induced by the primitive character ¥* with ¢*|g; cond x =conductor of x. We
denote the Mobius function by p(n), the Euler function by ¢{n), the number
of pz‘ime divisors of n» by w(n), the divisor function by 7(n), the cardinality
of ; and the greatest common divisor and the smallest commeon
mulilpl(* 01 thc integers a and b by (a,b) and [a, D], respectively. P is the set
of prime numbers and for any integer 121 we do{mO

Sila)=">" logpelep)),  Silx.o)= Y, x{plogpe(ap),

Y <pe ifi <peifi
Tple) = Z mé e{ma), T{e) =T (a),
ZEm<z

and for a fixed & 2 2 we define

B Y mtldnte),  Fla)=File)

b .
—‘-2{—557?1( e

Z Z Z (,,Z > Z iy :E::Um

x mod g x mody a==1 eSn<h
x primitiv (e g )==l -

4 mla "
Gibxe)= 3 xme (20}, Gl =160,

m=1
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for a character y modulo g.

q

M —an
Algn,x,x2) = Ch (Xiaa)of:(Xmﬂ)@( ) ;

a==]

for characters y; and yo modulo ¢.

A(qa Tty X0,g» XU,({) = A(Qa ’J"L), 7‘(3"3 71) = Z logp]. IOg P2,
pi—+-p§=n
%%y”(ﬂ:

| o= .
$§[)2< i\‘/"!‘

Lo (m,m)= Z me ¢ Lo e, n)=L{z,n),

m+!""‘mn

£
3 Em<n

‘/“<t< b

(n, R, 1) }; ¢ oln,R)=o(n, R, 1),
(j,i) i

N{o, T, x)=Ho: Lio,x)=0,0z0, 02 T},
O' .P ’1 Z Z U T: X}a

gS Iy mod g

where the possibly existing Siegel zero (relative to P) is excluded.

N(n,q){=N(q)) = l(m,l) :m® I =n(modq),m,1€{1,2,...,q}, (ml,q)zll .

memP =nlmodq),me{1,2,...,q}, {m,q) = 1‘ .

wln,q) =

¢y, ¢3, ... as well as the O- and - constants are effeciively computable
positive constants which may depend on k.

3. Preliminary results

In the following we only argue for a fixed nununber k. We first quote:

LeMMA 3.1, There exists o positive constant ¢; <1 such that L{s, x} #0
in the region
!

> | < kT
7= log T’ ts
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Jor all primitive characters x mod g, ¢ 1", T'2 2 with the possible exceplion
of ol most one real primitive character ¥ mod7 . If it exists, the correspond-
ing L-function has exactly one zero [ in the region given above, which is
real, simple and salisfies

(o)) Cy

<1-8¢ :
Fi/200g% = ps logT

Furthermore, all the other zeros of the L-functions for primitive characlers
to moduls ¢ =T do not lie in the following region

1 . ec i < kT
>1— o ] < T
g= mgy*°5<5mqkmj> =

where §(17) and k(T') are defined by
5(T) = { (1— ﬁ) log T r,if[i‘ erists, } R(T) = { 1 if B ewists, }
1 H v - .

otherwise ¢y otherunse

PrOOF. [2], chapter 14 and [3], paragraph 4.

Set P, =", where by is a sufficiently small constant specified later. Let
us further choose T = 7 in Lemma 3.1. With the notation of Lemma 3.1 let

further i
Py gt = Pyl 37, 7 <P
P} otherwise ’

where A, 0 < A= A(k) < % is a sufficiently small parameter specified later.

Then Lemma 3.1 holds with T = P», Ae; instead of ¢; and 7 £ Pt (if B exists).
We define the Py, er-*-excluded zeros as those zeros s = o+ it of the Lis, x)-
functions, where y is a primitive charvacter modg, g £.FP, in the region

« 1
16;32 I(Jg 10?) o 2 log log x Ak
2] - 2 Jog | e | e <P +7’
- log z B\ a{(F%) IR

excluding the Siegel zero (velative to P2) and §(1%) is defined by Lemma 3.1
with T'= Py and A¢p instead of ¢1. {Here e does not denote the exponential
function, but the number ¢.) For any number P with P = P for an 1 €]0,1]
holds Lemma 3.1, obviously with 7= P and n7A¢; instead of ¢;. The P, Aney -
excluded zeros are defined as the zeros of L(s, x)-functions to a primitive
character ¥ mod g, ¢ < P, in the region

1
16k% log log = 204k +2) O\ Tegless At
21— log | e | =z t| < pAk+T
’ g BN\ kT 3%3(D) L ’

excluding the Siegel zero (relative to P) and 6{F) is defined by Lemma 3.1
with T'= P and the constant nle;. We estimate the number of P, Anc -
excluded zeros by means of
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LEMMA 3.2. There exist constanis ¢z and cq such that
N7 (a, T, T"7) S ez (T}TC"(] ),
where §(T) 4s defined as in Lemma 5.1,
PrOOF. See Zaccagnini [36], Lemma 3.2,

Applying this lemma we get for a sufficiently sirall b:

1
1652 log log 204k +2) Tostoss 4kt
S [ I Tl P . , Py, PREHT
N ( log = i (<{4k+3)5(1”) 2

5(1—5)(4%3))

Lezd (o) exp (16.‘;21)204 log log x — 16k%byeq log RTER)
< 65/5( 1) log!/® .

So we find by §(P°) £1 that there are not more than

(3.1) <logx

pairs of numbers (p, '), where cach of the two numbers is an P, Ane; -excluded
zero or a Siegel zero (relative to P) or = 1. Now we prove that for every

fixed Py we can find a P with P=I, n€ [%}%, 1], for which further holds

3.2 o is P,yie; — excluded zero= |Im(o)| ¢ pE+s 1o it
!

First we have for a sufficiently large = and a fixed bo:

{(3.3) 16008 ©)/° §P§“.

Let {71, ...,vm} be the imaginary parts of the Py, Aep — * — excluded zeros
with |y} € [1)241:—1-2’ pz!ik{d] and P‘,;”HQ Simls ... 2 [¥ml £ P£k+3- Es-
timating the %, Ae; — * — excluded zeros as in (3.1), we find by (3.3) that
there holds at least one of the following three inequalities:

! plkts y
Jte{s,...,m~—1} with ol >16 or ~E—z P:z]/fl or i;ililz = 21/1‘
I’Yil h’mi P2

Setting in the first case |v| = PU+3 iy the second case |y | = P17 and
. . ; . . k-t 2/Ak13 .
in the third case Py¥72 = P13 we find a P with P € [P, RS (I
there holds more than one of the three inequalities, then the definition of
P8 can be chosen arbitrarily among the possible choices.) But by the
definition of a P,nie; — excluded and a Pa, Aey — % — excluded — zero every
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P,niey — excluded zero is also an Pa, Aey — * — caxcluded zero, because by
the definition of §(P) and §(%) by Lemma 3.1 with the constant ¢;An and
ey A, respectively and by §(P) £ 1 (by Lemma 1) holds:

4h+2 11
4+ 33(P) = §(Py)

So every PP, i) — excluded zero, which does not satisly the condition (3.2),
would be a P, Aey —* —excluded zero, which contradicts the choice of P. So
P satisfies the condition (3.2). Then Lemma 3.1 holds with T = P, ¢} =nA¢;
instead of ¢; and

(3.4) 7 < PUkE3/aE+2)A

{if the Siegel zero exists). In order to simplify the notation we write in
the sequel ¢ = ¢; and the P,nic; — excluded zeros will be denoted as the
P —excluded zeros. Let the P — excluded characters be the primitive char-
acters x(mod ¢), ¢ £ P, for which L(s, x) =0, where s is a I? —excluded zero
and denote by the P — excluded moduls the moduls belonging to the P —
excluded characters. We will also use the following notation:

0 = {P — excluded characters}, 0'={P — excluded zeros},

(5.5) P=2a% §(P)=46, ¥= cxceptional character (to P),
B = Siegel zero {to P).

The unit interval [é—j, 1+ -(12] is now divided into the disjunct major arcs M

and the minor arcs mn, which are defined by

.. . i 1 a 1
M:ZZ I((i’.,g% I(“:Q)Z{%_‘Cg,%‘{’a],

gs P a=1

_ L 1 o = Ak=3
m—[Q,l-i-Qj'\M, (Q=alP .

where P is defined by (3.2). We obtain

1+(3/Q)
r(x,n)= / S(a) Sy () e{ —ne)der
(3.6) 1/Q
x/ S(cv}Sk(a}e(m?'a.a)+/S(oz)Sk(a)e(—vm)::r](m,n) 4oz, n),
M m

where ri(z,n) and ro(z,n) are real, because the sets M and m are even
maod 1.
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4, Arithmetic and analytic lemmas

LEMMA 4.1, Let g=qiq2 and (¢1,q2) = 1.

(a) N{gig2) = N{q1)N(ga).

(b) For any prime number p and any naturel number o 2 2 holds: N(p®) =
p* " N (p).

(¢) For any natural number v holds:

0= )

Alp,n)

L Then we have
(p—1)*

d) Put s(p,n):=14

s(p, ) == -(;){-?—WNUJ).

Proor. (a) We note that every a with 1 £a < g can be written in a
unique way as a:=ags + agqy with 1< e; S q;. We write

. & 4 -
LZ }: (}(n 72.@))

a=1m=1 =]

split the summation over a in the two summations over gy and az and after
some arithmetical transformations get the lemima.

{b) By definition we have

N(E®) = m:m* #n(modp), me {L2,...,p%}  lm,p)= 1‘ )

For e 2 2 we write for (1, ¢) =1 m=v+wp® ! with 1 v <p~ 1, {u,p) =1
and 0 £ w < p—1, from which we obtain

N(p® = |(v,w): 0" £n{modp), 1 Sv <p* ! (u,p) =1,0SwSp~ Il
=pN(p"~ 1),

Applying {o — 2)-times this argument we get part (b).
(¢) We get from {a) and (b)

a—i.

o P%p i
V0= 11 V) = I =)

_ P
~£‘1[WN(M'
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LA I}“* ik
SRR LT

=1 wm=1 I[=]
(p—1)?

£y (o)
)?

s(pyn)=1+

a=tm=1 I= Y ,
= = =N (p).
oo i)

LEMMA 4.2. For any naturel number k Z 1, any primitive character x
modulo p%, oz 1 and (a,p) > 1 holds:

Cilx,a)=0.

PROOF. Writing « = a/p and m = u+ vp®?
g ! i

Ll a m* e a ur
)= 3 e (75 ) =3 e [ 5] St or )

mezzl uz] v=]

we obtain for o 2 2:

which is equal to zero because the last inner sum vanishes for primitive
characters. For « =1 the lemma follows by the orthogonality relation of
characters.

LEMMA 4.3, For any natural number k, qigo=q, (g2,91)=1, Xa(modg)
= Xa, (Mod §1)xa, (mod g2), xp(modq) = xp, (mod g1)xs, (mod ¢2), and h =
higs + hagy

(a) Cn’\‘l(Xl'H h) = Ck(Xn.; 3 h’] )Ck(X(r,g B ’.?'2}'
(b} A(q, T4y Xas Xb) = A(Ql: Yy Xaoy s Xy )A((1'2> s Xeags sz)-

(¢) For any natural number k 2 1, any primitive character x modulo g,
g>1 and {a,q) > 1:
Ok()ﬁ a’) =0

PRrOOF. {a) is shown in the same way as Lemma 4.1 (a}. Applying (a)
we can show (b) in a similar way. (¢) There exists a p® || ¢, @ 2 1 with
{p,a) > 1. Writing a = agp® + 013.30, it is by part (a) enough to prove that
Crlxpe s 1) = 0. But this follows from Lenuna 4.2 because of (p,ay)>1.

LEMMA 4.4. (a) For any naturel number n and prime number p
Alp,n) = —{wln,p)—1)p—1.

Let now be given any n which satisfies the congruence conditions in (1.1}.
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{b) If at least one of the two characters 1 and xo modulo q, g > 1 is
primitive, then

(w{n,p) ~p+1 )

[Alg,nx1,x2) S 070 [ ] (1 - (p—1)2

rhat
(e} For any cheroeters xy and yo modulo :
[A(g, 7, %0, x2)] € 6% (g) log™ ¢.
(d) For any prime number p and s(p,n) defined as in Lemma 4.1 (d)
s(pyn)y >0

holds true.

Proor. (a) By the definition of A(p,n) we have

p=1 p-1 ok ]

T -1
4 i’ —_— o s ], — [y L — ; — 1.
Alp, n) E E ¢ ( ; a) (w(n,p) =) p—1

a=} m=1

{b) By Lemma 4.2 i{ holds:

q N 3
572 At 0, 30] = |672(0) 3 G )t ae )

=]

f

¢ (a)g D xall)xelm)

i-l-'m.kEn(mml @) 12 m%y,

(o, g )

¢ 2a)aN{g) <[ [ ¢ wpN (p),

Ply

A

where in the last step we have used Lemwa 4.1 (¢). Noting further that by
the definition of N(p) we have:

(4.1) N{p)=|m: 1Sm<p—1, m's# ?';-,(n'lc)dp)i =g 1 w(n,p),

we see that the lemma holds by

-9 . p—1-—win,p)
|f/) ((])A(Q:naXl:X?)[ s Hf3 (W
mlg
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- H (1 _ (w(ﬂ,( ﬁ):];gp + 1) ‘

ply

(¢) The lerma is trivial for g =1. If the characters x; and X, satisly the
condition of part (b), then part (c) follows from part (h), w(rn,p) Sk and so

11 ) o (o) e

»g nEqg

In the other case we have

X1 =X1Xo0 OF X1 = X0,

where g = ¢*l and x is a primitive character modulo ¢*, ¢" > 1. We quote
Lemra 5.3 in [8], which states that for a character y modulo g ¢ x* modu-
lo ¢* and {a,q) =1 it holds

(4.2) Cilx, a) = x{a)r{x*)p (qﬁ’;) X (&q‘) '

So if x1 = xx04, we can restrict ourselves to the ¢ which satisfies:

(4.3) p0)#0, (Lq)=1.

From this we get x2 = xaxs with x3 = xa mod¢* and x4 = xa mod{. So we
obtain from Lemma 4.3 {¢) and the first part of the proof:

(4.4) LA(g,n,x x2)] € ¢ (g") log™ 4" Al my X0 xa)-
Using further the estimate
(4.5) Ci{x, a)<eq'*7,

which holds for {a,q) =1 and may be found in [13], note to Lemma 4, we
obtain

i
- - . —an 3/24¢
(4.6) Al xo00 x41) =Z Crilxog, a)Crxa, a)e (“T“") g AT

=1

So the lemma follows from (4.4} and (4.6). If xy = xo, the lemma follows
immediately by arguing like in {4.6).

(d) By Lemma 4.1 (a) it is enough to show that N(p} > 0. DBecause
of (4.1) the lemma is proved if w(n,p) = 0. In the other case we know (see
Ireland, Rosen [5], p. 45} that w(n,p) = (k,p -1}, so that by (4.1) the lemma
is proved in the case p—1tk. By Fermat’s little theorem we know for p— 1|k

¢ =1{mod p) Va with a0 {mod p).
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So we obtain for p — 1|k:
n=1(mod p) &= win,p)=p-—1+= Nip)=0,

which proves the lemma.

LEMMA 4.5. For two primitive characters x1 mod g and yo mod gy let
@ =, q2) S P. If n sotisfies the congruence condilions in (1.1}, there holds:

Z |A((J>naX'in],q:X?X(),q)‘
= $*{q)

¢=0{mod g3

& log‘r’;‘"‘""1 P,

PrOOF. For qi]g let gil=¢. Analogously to (4.3) we only have to treal

those ¢ that satisfy
!"L(l}}é{}1 (l:ql)::l:

and for which, under the additional assumption [g1, g2] = g3 and gslq,

(4.7) (%qg) =

holds. So we obtain

X1X0,g = X]X()ELX(] » o X2X0,g 7 X2X0_1Xo s

’q
and we further have by (4.2), Lemma 4.3 (b) and w(p,n) £k

IA(’I'."?,, TE’N g H pfi? — ’n'i,fi:w(m).

plm.

Using this, (4.7), Lemma 4.4 (¢} and Lemma 4.5 in [14], we finally derive the
lemma by

Z [ A(g, 7, 310, X2X0,0)]
gy $*(q)

g=O(mod g3)

1A(q3, 7, X1Xp,525 X2X0,53.)
1 2

| A, )|
) 2 T
<
(m qg}} 1
) Aw(m ~ A‘w(m)
<log'* P Z ng( & log'**1 p Z o < (log P)*.
7
ms P mspP
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LEMMA 4.6. For all p with 0 Re(p) £1 and s 2 esk? log k 4t holds:
1.
/|Fg(cx)|2‘gda & p2e/k)-1
0
Proor. Considering the underlying diophantine equation this can be
shown in the same way as Lemma 5.2 in [14].

LEMMA 4.7. (a) Let 25271 < A < 2%l and 0 SRe(p) £1. There holds:

A
/ | Fyp(en)|” dex < 2127001,
)

(b) Let 22 <A< 1 and 0SRe(p) £ 1. There holds:

A
/ 17, (c)|? dev < .
Y

Proor. (a) We deline

me i n=mFez/2% 1],
Uy, = ‘
0 otherwise.

Then we get by Gallagher’s lemma {[3], Lemma 1)

A x pren
{4.8) / |Fy(e)|? da < / A Z Up | di.
Y :z:,/ii"”‘l ¢

For the inner sum holds for a fixed ¢ € [2/25F1, 2]

L4-(20)]

Z < A+ 2N - Vi a1 g1,

4

Substituting this in (4.8) we obtain the lemma. Part (b) is proved in the
same way.

LEMMA 4.8. (a) Let be given any o = 41y with 0S8 £1 and || £ 2/Q.
Then for 1/Q Sjal £1/2:
gh-)
T,(c _—
pla) € ol
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(b) Let be given any o =iy with 0L A< and 2?2 2 |y > 162/4).
Then for lof S 1/0Q:

o)<
Tolo) € —.
¢ ]

Proor. Part (a) is nearly identical to Lemma 12 in [1} and part (b) can
be shown in the same way by appealing to Lemmas 4.2 and 4.8 in [11].

LEMMA 4.9. If p=f-+iy with 0SB <1 and |y| £ PY then jor any
s2ck?log k and for all o' with 0<Re (o) < 1:
1/.2
/ By () Ty jder ¢ MO = 5
/e

Prooyr. Using Holder’s inequality, the Lemmata 4.6 and 4.8 (a) and the
definition of @) this inequality can be shown in the same way as Lemma 5.8
in [14].

LeMMA 4.10. If p=58-+iy with 0 2

LB and 16PVS < |y g PARAT
then there holds for all ¢ with 0 ERe{p') £1:

L ()T () [der & /P P21,

&= L"""“\_\,Q],-

Proor. Using the Lemmas 4.7 (a} and 4.8 (b) we get

e 10 V2w 2
/ [ 2 () Ty (o) [der € / Py (o) P de / |7, ()| dex
~1/Q -1/Q -1/Q

& {I:lfkf)-MQkul‘

5. Lemmas for the singular series
Lemuma 5.1, (a) For any character x modulo p™ and oy 20
Cr{xx0,a) =0

holds if xo @s the principal character to the modulus p®, pra and a2 j+
max(f, « ), where j=1+ord;(p) and w = ordg(p) <= p™ | k.
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(b) For any primitive character x modulo p®, pta, w=ord;(p) 21 and
a2 2w i holds:
Celx,a) =0.

{¢) Let x be any primitive character modulo p* for any prime number p
end o naturel number oo 2 2. Then there holds for any infeger v, a2y 2 af2:

o e
X(l—{ [) }‘ﬁ(’(pa__,y)a

where c==c(7y), 1S Lp®7 is a natural number with pie.
(d) Let x be any primitive character modulo p° for any prime number

p <2, Then it holds
¢
x(I-+p)=c| =],
x(L-+p) (p2>
where 1 Lc<p?, pte.

Proor. {(a) For 121 <p® we have I =u+vp®d, ISu<p™ 7 00w g
p —1. By a2 j+max(4, e;) is further ¥ = o 4 vkuf1p*7 (mod p) and
[=wu(mod p™). So we geb:

)(l

11.
(X0, @) Z xxo(l (pﬁ)
=1
perd ey Pl k=1
o1 avku
= (1e)e e | —— =0,
thé (J)E: ( » )

v=0

because the inner sum vanishes for any p prime to w.
Y Pl
(b) We obtain in a similar way

p(l‘ & W m .
’ . ) L e
Cix =) x(l)e<p—a>:; () gx wrop™),

from which the lenuna follows because the Inner sum vanishes for a primitive
character.
(¢) It remains to show that pte. But if ple, we obtain

e 1 g . . . u(:pa""")' 1 .
X“+W“U=Mu+ﬁlww””U+wkm<“ﬁq“ w1

which contradicts the primitivity of the character.
2
d) Using (14 )" =1 (mod p?) for p#2 (sce, e.g., Ireland, Rosen [5];
g ! P g
S. 43} and p (13) for p# 2 the proof is analogous to the one of part {¢).
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LEMMA 5.2. In the parts {a)-(d} let be given ¢ naturel number q =
p%, a1, two characters xy and xomodq and ptk, p*{n.
{a) For g=p, x1 primiive and xo = Xo,4 1t holds:

A(p: n, X’l}X?) g U" -+ 1)7}3/2'
(b} For g=p, x1 primitive and X2 # Xo,¢°
Alp,myx, x2) S 1\7?33/2-

(¢) For q=p, @24, x1, x2 primitive and pP |, < {f—;] :

Al n, xi,x2) £ k:pa"’[g"'zi“i]"’[%],

(d) For g =p®, o {2,3}, x1,x2 primitive and wunder the edditional

conditions p#2 and p? fn, FE1 in the case =3 holds:
A(pg,’ﬂ,, X1, X2) &, kp(?/fi)cr-l-e )

(e) Let be given the principal character xo.q to the module p® and o
primitive character xz to the module p® with oy <. Let Pin, 859
If with the notation of Lemma 5.1 (a) oq 2 max(« — ordg(p), 6, %—a}, then
there holds for any primitive character x1 modulo p®:

A% X1, Xoaxe) S KRR,

PrOOF. We first transform A(q, 7, x1, x2) (and Alg, n, %1, Xo.ax2)). Not-
ing that in Parts {a)-(c) x1 is always primitive, that [7{x1)| =¢'/? and that
(4.2) also holds for {a,q) > 1 for primiiive characters, we see

q ok G
- mc —n . l
Algnxn,x2) = Y xelm)e ( a) > Txlbe (w)

M, ] 1 i=1 4
q q ko,
(5.1) =) - xolm) Y- () )
fne=l a==] q
q
=) Y Txa(mF - n)xe(m) =¢D(x, x2),
m=1

a .
where D(x1,x2)= 32 xi(m = n)xa(m).
=l
(a) This case follows immediately from (13.3) in [14] and (5.1).
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(b) For any integer n which is prime to n we can write any character y

modulo p as
mindg (n)
x{in)=e| ———< 1,
p—1
where m € {1,...,p— 1} and ind,(n} denotes the index of n relative to
a primitive root g of the reduced residue class system modulo p. Defining
especially a character x; modulo p for (n,p) =1 by

ind,{(n
Xs=¢ (m—m——’}@)
p—1

and ys(nj =0, if (n,p) > 1), we can write every character ¥ modulo p as
X X 1
x= X, meE{L, ., p— 1}, where m=p— 1 <=5y = xo. We obtain:

3 iy
D(x1, x2) Z X ()™ () Z Xs ((m — n) mmz>

=l i |

where my, g € {1,...,p-2}. Let us denote Fy as the residue class system
modulo p and f{z) = (2* —n)™ 2™, With the notation of Theorem 2C in
(10] (Weil’s lernma} the character x, has the order p— 1. If f{z) is a (p— 1)-
th power in the sense of Theorem 2C', every zero @g of f(z) € F,[a] has the
order gy, (7 —1), guy € N. Because of p{n and mp €{1,...,p—2} the order
of the zero zp =015 # gz, (p— 1). f{x) not having more than (k+ 1)-different
zeros, the lemina now follows from Theorem 20" in [10)].

{¢) Let v= [“‘ ]]. Writing every number ¢ with 1 Sa Sp® as a=u +
vp?, 12 uSp?, 02 v Ep® 7 —1 and noting that for every integer a, pta
there exists a number @ with az = 1{mod p?), we gel:

Pt prT—1

D{x1.x2) Z Z 1 (1 = n A kb Lop ) o (w4 vp")

uw=1 v=0
Py Ppe=T ]
= Z x1 (1° = n)xe () Z (1 + kb Yup (uF - n)) X2 (1 +avp”).
u=1 v=0)

From this we obtain by Lemma 5.1 (¢) and (14 p7)* =1+ ap” (mod p®} for
two natural numbers ¢; and ¢g, which are defined by

(52) il +p"'):e( ). reien,):

T)CY—T

i r! ey kuF Yo (uk —n) cofiv
D{x1,x ZX} (N "“7?) X2 () Z ( P ) ¢ (pa”"T) -
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From (5.2) and (5.3) it is obvious that {¢jepk(u? = nju, p) = 1. Noting further
that @@ = 1{mod p¥) == a@ = 1(mod p*~7), we see that the inner sum in (5.3)
# 0 if
(5.4)

erku® 1wk —n) + =0 mod p ) = wF ek 4 e3) = con(mod p* 7).

If pP i and p? || ek + ¢z, there holds (by the assumption of the lemma)
Fsi§] <a—9v. So because of (ucy,p) = 1 a necessary condition for the
solvability of the last congruence is #=4, in which case we can equivalently
examine the congruence

pC1k4co

n (mod
wh el = g (mod p
ph i

aﬁv*ﬁ)

which has mostly & solutions modulo P18 8o there are not more than
kp?r=etf numbers modulo p¥ for which the upper sum # 0. Together with
(5.1) and (5.3) the lemma follows.

(d) We argue until (5.4) as in part (c). If p does not divide both n and
ey k + c2, the congruence has not more than k solutions modulo p®~ and the
result follows similarly to part (¢). In the other case plin and plerk +cz we
derive from (5.3) and (5.4):

p7
(5.5) Dixix2) =p Y (u =n) xal).
u=1

For any n prime to p we define

myind 4(n) )
T 3

it =e <p“‘1(1v— 1)

for m; € {1,...,p% 1(p—1)—1} and ind4(n) is the index of n relative to a
primitive root ¢ of the reduced residue system modulo p®. Defining further-

more a character ¥ modulo p® for (n,p) =1 by x(n) =ec (;};‘%) (and
x(n) =0, il (n,p) > 1), we have

my

(5.6) Xi=X

x is primitive by its definition, so we know by Lemma 5.1 {c} and (d) that
x(I+p)=e (5%) and yi(L+p)=e (p—of%f), where pie;, 1€ {1,2,3}. By

(5.6) it follows from this ¢; = myes(mod p* 1) (1€ {1,2}) and so:

(5.7) pleyk + cg = pirny ki -+ g,
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By (5.5) and (5.6) we know furthermore

Y 7’
Dixy,x2)=p Z X" (uk - 'n,) X" u) =p Z y TR () y (1 - nu’“) ,
u=1 e

where 7 is chosen such that ufuk z L(mod p*~ ! =mod p7), because so we get
by p || n: nuFub =n(mod p). Furthermore, we know from (5.7} plm ik +mq,
from which we derive by v=w — 1 that

(b ptrakdme o praktme (n6d ) Ve N,
S0 we get

Xm;lH—mg(h + p'y) =y ((f? + p')')m]k%ﬂng) =y (hmlkklwng) — X7111k+71'L2 (h),

which shows that 1512 jg a character modulo p?. For o =2 we get
from the last identity for D(xy,x2) , plln <> n="ap, (fi,p) =1, (5.6) and

a ”'"P)ﬂe(%)

= k
— —~fic i o
D{x1,x2 MPZ ikt () (-—p )<<cp‘5/z+‘,

e

where the last inequality is derived by applying (4.5) to ™52 If =2
we can now derive the lemma by the last inequality and (5.1). If =3 we
write any w € {1,...,p*} asu=vtwp, 1Sv<p, 1 Lwp-1, getting so by
(5.6) and the second last identity derived for D(x1, x2):

p o p—1
Dix1,x2)=p L Z R (Ll (1 — fipo® — 'szvk‘lwpg)
v=1 w=0
p—1
M[)melkimg v) X1 (1—??}'?0 ) melklmz
HES| w={

x (1 +Bwp) x1 (1 - ('J. — ﬁp'uk) ﬁkvk"lwpz) ,

where a@ = 1(mod p), which implies vTwp = wp(mod p?), which is sufficient,
because ¥70FH2 hag been shown to be a character modulo p®~! = p?, and
implies also (1 - ﬁpv“’) (E - ﬁ.pvk) Akv® = wp? = ako* Twp? (mod p*). We

know by Lemma 5.1 (¢) that

- ey _ . Cs
Xl(1+2'32):€(;)= X(lﬁ‘zﬂz)ﬁe(—pﬁy pheges,
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and, in general,

Xa (14+00%) =0 (1+9%) . xe€{x0, X}
From (5.7) we know further that mk-+my = peg and so we get by pl (k)
forp>2
(1 4+ Twp)™* ™ =1 4 Fuegp?(mod p?),

from which we derive together with the last identity for D (x1, x2):

Xl Xl pZ—-—rmk—lmg , Y1 (1~?~‘Lp1)k)

Pt e R TR RS R
iy crceU—e4q (1 v ) fky
P e | w
)
w=0 P

Similarly to part {¢} we concentrate on the congruence

CreaT = €4 (1 - ﬁpwk) Akv* ™ = 00mod p),

which for pleg is not solvable because of ((;4 (1 - ﬁ,pv’”') ﬁ.k.v"““l,p) =1 and
in the other case is equivalent to

= v® (—eseghip — cafik) + csce = 0{mod p).

By (eqcscsirk, p) = 1 this congruence has at most & solutions modulo p, from
which the lemma follows together with {5.1) for a=3.

{¢) Define A= [-’———J +1. Wewriteo with1€aSp®as a=u+up, 1 €
ugpt, 0w <p® 2t — 1 By the assumptions of the lemma we have k=
Epeetd with (B p) =1, d= 0 and for b= 3

k
> (2> = pP =0 (mod p*).

Using this we get ag in part (c
I

p

D(x1, X0ax2) = 1 (u‘“ =) Xo,0x2 ()
u=1

P Al

X Z X1 (i 4 Fpamaatdy kL ok ﬁ—n—)) X0,aX2 (1 +ﬂwp)‘) X
v=0
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where @ is chosen such that @ = [{mod p*), in which way we get:

(* — n)(uk — rru.",u)mfcpc"*“”’du,k P = kpt Tty kg0t (mod p®)
and Tuup® = vpt(mod p®1 ). By o~y + A2 § we get by Lemma 5.1 (¢} and
x0,ax2(m) = xa(m) ¥m analogously to (5. 2)

et e C1
xi{l+p* et =¢ (mw\) ’

. 6]
X0,ax2(1 +pM)=xa(1+p*)=e (pcu-m)\> )

where pfejes. We obtain as in (5.3)

»
Dix1, x0,aX2) = Z X1 (’uk - n) Xo,ax2 (1)
=i

)0 Ao [

ey kptuFly(uk —n CoTiv

157

X E el ——~1.
p{u —A pcu -\

()

Arguing as before we see that because of (epu, p) =1 the inner sum can only
be # 0 if d=0, in which case we have to examine the congruence

uF ek - eg) == con(mod p® ),

By A< a; — A it is equivalent to the congruence

ﬂmm = -mrm'w(modp Ay
P i

that has at most k solutions modulo p®1 =28 from which the lemma follows
similarly to part (c).
LeEMMA 5.3, For (my fwo primilive choraclers Xi mod q1 end yo mod gy

/16

with g3 = [q1,¢2) £ x1 holds for all hut < qul natural numbers n €

[(9/10)z, w:
A3,1 X1 X097 X2X0g5) €05 (1,

ProoO®. The case gg =1 is trivial. As in (4.3) we can concentrate on the
case
a3 =010, (@1, 04} =1, X1X0,g5 = X3 X0,04

X2X0,4; = X5x6 With x5 mod g1, x5 mod g;.
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By applying Lemma 4.3 {b) and arguing as in (4.6) we obtain

A((}Ij, 74 X1X0,q45 XﬂXU,r]S) = A(q1 3 T X0, XS)A(qfl: oy X0,q4s XG):

3/ D)
A‘(qfl) T, XO,(_MSXG) < (1((1 /2 C'

(5.8)

The lemma follows from (5.8), if ) is the principal character to a module
4 . .
q S qg/ . because in this case we get by (5.1) and (5.8):

o (a3 {3/2)te
|A((]3, T4y X1X0,030 XZZX(J,%N <« 0 (;};)
/2 (3/2)+e 15/8)4¢ o~ 2-(1/32
SQJ/ qé/) (ér;h{;‘)” (§(J3 G,
So we assume in the following that x; is a primitive character to a module
q1 > qg/ 1 By Lemma 4.3 (b) we have

(5.9)
3
A((J],>"‘?'aX]1X5) = H H H A(paanaXl,j)“aXf),jJ“):
De{AB,CYi=] PYH

Alp™ »”\X}’PO X5, p )3 D,’

where x; = [] xipr, 1€ {3,5}, x1,pe mod p%, an empty product is equal
P llo
to 1 and

AP, m, X1 po, Xspo ) € AL =a=1, plk,

Alp™,n, 100, Xope ) € Ag == a =1, pthn,

Alp™,n, x) pes X ) € Az o= 1, pik, pln,

AT, n, X1 po, X )

Alp®,n, X1pes XS,]}“’) € 3y =35 p, primitive, o= 2, p{ k, p¥fn or xspa.

€ By <==>xs5p, primitive, a2 2, plk,

primitive, =3, ptk, ps£2, p® i n with

BE1or x5, primitive, @24, ptk, PP in

with 3 [;ﬂ ,
AP, m, X0, Xsge ) € By <=5 p,, Drimitive, o 22,

A®,my x1,p0 s Xope ) & B1 U By,
A(p®, 0, X1 pe, Xspo) € C1 == X5 p, N0L primitive, a2 2, pﬁ nowith B> [3],

6

AW n, x1pe, Xspe ) € Co =25 p, 10U primitive, a2 2, PP

o 2
B [g} , cond g5, 2 Max (ordk(p)+1, 6, é"(l{),

|| with
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A(p® 1, X1 90, Xspo ) € Cg <= X5, 10Y primitive, a2 2,
A(pa, Ty X% X5,p° ) g Cy U Cy.
For A{p®, n, X100, X500 ) € A3 U B3 U, we have by (5.1} trivially:

2a

(5.10) | AP, 1 X1 s Xs e )| S

In the following let cond x5 pe = ;. For the estimation of A(p®, n, x1 o, X500
€ (4, by Lemuna 5.1 (a) and by the relation ordg(p) + 1 £ ¢y, which holds by
the definition of Cy, we can restrict our observations to the case o £ ordg(p)+
a;. By BS (%] £[% ] the conditions of Lemma 5.2 (e) arc satisfied in this

case. So we get by Lemma 5.2 (a)-{e) for A(p®,n, X190, X5p0) € AgUBUCy

(5.11) A1, X1 pors X500 ) S ekt T/,

For the estimation A(p™, n, x1po, X5,pe) € C3, by Lemma 5.1 (a}, we have only
to look at the case o £ ordg{p) + max(ordy(p) + 1, ay) and so ordy(p) 2 1. If
the maximum on the right side is ordg(p) + 1, we have

a < 3ordi(p).

In the other case it follows from the definition of Cy
o2 , 2
c; <max | ordg(p)+ 1,6, 3¢ <max | Gordg(p), 3 (ordg(p) +a1) |,
from which together with the equivalence

2
g < 3 (ordy(p) + ay ) <= a; < 2ordi(p)

[y

it follows that:
o < 6ordy(p) and so e L 6ordg(p).

So we get i both cases
a <6ord(p),

from which we get together with Lemma 5.1 (b) for A(p®, n, x1,pe, Xope) €
AUB Ul
(5.12) |A(p™ 1, X1 90, Xspe )| S p1E T,

We define now

Hann) = 11 P,

il 19 )
Alp™ WX X X5 e JEAUBLUCY
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— It
glqi,n} = H n,
bl U
Alp® a0 \p X5 e IeAzUBauT,
s, 1) = 11 .
% gy

A(P"m.xl_pu X5 e JEARUBUC,

Then we have f{q, n)g(qr, n)h{q,n) =q1, g(g1,n) <8(q1,n)® and the three

factors are pairwise prime. Defining characters xq, o modd(gqi,n), i € {1,5},

de{f,g,h} withx;= [] x4 weget by Lemma 4.3 (b) and {(5.9)-(5.12):
def{f.g.h}

EA((]Ian)X]aX('J)l: H EA(d(Q]1“))77’:)(],(17}(2,05)'
de{f,g,h}

(5}3) é kig((:GEZ)w((fl)QQ(qu '7'1,)}?,17/9 (ql’ n)
& (csk?)2@) g1 gy, n)gl
& (egk) M) (g, 71)2/3qi'7/9.
Let
Aw, @) = |ne[(9/10)a,al, (a,m) 24|

B(Q’i} = 'mmod 1, (Ql,m) gqi,/ml .

Then we have obviously

Az, q1) € (;;i + 1) Bq},
1

and
q1 9/10
Blg)s > LEr@)d™,
gy '
c!gq;/w
from which we deduce
~1/10 —3/40 ~1/16
(5.14) Alz, 1) < og (@) S way M (g5) < gy

The lemma follows now from {5.8), (5.13), (5.14) and (csk?)“90) < ¢f.

LEMMA 5.4. For allm and all I holds:

o(n, R,1) < (log R)*1.



314 C. BAUER

ProOOF. From Lemmas 4.3 {b), 4.4 (a), (4.2) and Lemma 4.5 in [14] it
follows that

)| Alg, n)
|O’('HI?:’EWZ/ j(/)! (EJ I Z

gz R Q&R
(g )=1

w(}

& {log R)¥!

¢2( ] <<105HZ

g& R

LEMMA 5.5. Let P=a" where d is a positive constant 1/10 Let be
given o set of natural numbers ;, 1 <1< s < (log 23, wth n >I’ . Then
for sufficiently small d there holds

PN Ap)\ L o (e
o (n, ii,l,) = H (1+ (p-1}2> + 0 (I 16)

pE P
(pdyy=)

for all but < 2'=%, §) 20 natural numbers n € {(9/10)x, z[, which salisfy the
congruence condiiions in (1.1), and for all ie {1,...,s}.

Proor. The congruence conditions for n are required because of Lemma
4.5 (¢). We first argue for a fixed I € {I;,...,1;} and set 1; = R. Defining
Alg,n, D) = p((q,)*)A(g,n) and noting Lemma 4.3 (b) and (4.2), we obvi-
ously have to estimate:

2 c/q’ﬂ 11 (l+£~(§{§l)

gEnR pEF

ST ¢ Al D+ | 67 He) Algn)

R<g<V g2V
GgEeD gD

=Ty (n, R) +1Ty(n, R),

v 2 o
where V = exp (1—95—1—-]931’) and

A

log log »
D={q:geN, u(g)#0, plg=>p S P}.
We first estimate 7 (n, R). We have:

(5.16) ¢ () Algny=¢ *(g) Y A (m,n)As(g/m,n),

mlg

where we define by Lemma 4.4 (a) and w(n,p) =0 for pin:

Ar(p,n) = { g#'((p’ D3plw(p,n)=1) pin,

pin,
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o e D) pin,
400 = w009 ~1) pln,
Aé(q,n):HAi(p,n),iE{l,Q},

plg

and an empty product is equal to 1. For ptn it holds
w(n,p) = \m m* =nlmodp), me (1,2, .. ,p)i .

We obtain by Lemma 4.3 in [13], (4.2) and |7(x)| <p'/? for pin:

1520 /o mk
wln,p)=14+— Z (Ma) Z e (——a)
p

a, 1 m=1
1 P =1\ e
- 1 e h 3 P
| ; Z T“(X)Z( ( P a) x{a)
xeA{) =1

=14 3 FOoPx-m=1+ Y x(-n),

x€A(p) X€A(p)
where A(p) denotes the set of non-principal characters yy modulo p, for which
x" is the principal character and

(5.17) A = (kyp—1) = 1.

So we deduce for all p:

(5.18) Ailp,n) =—pu((p, )% > x(-n).

xEAp)

We obtain from {5.15) and (5.16)

Ti{n, RS > ¢ (m)]Az(m,n)) > $72(d) | A1 (d,n)]

»U3 cmev Rfm<d<Vim, (d,m)=1
me ded

(5.19)

+ Z {m)|Aq(m, n))] Z ¢ 2(d) A; (d,n)

mé.’f”g H/m(d(\//'m G E
meED deD

=1 (n, R) 4 Fa(n, IR).
For /) (n, R) we get by win,p) <k:
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Fi{n,RySR™/3 Z ¢ (mYm]Ag(m,n EZ ¢ 2{(d)| A, (d, )]

m<V d< v
meP deD
Aa(p,m) plAa(p, n)|
<R ]/.3 ( pE ) -1/3 (
,,U;; (p-—1)2 g (p—1)?
pine pin
(5.20) < I1 ( RESLGAD |)
hoers (p—1)2
<R ]/SH( >3wn)H<l _’val))
pEr 7 pslr p

< R (log Py 3,

For the estimation of Ih(n, R) we obtain by the definition of A;(d,n) and
(5.18):

> ¢ (d) A (d,n)

Rim<d<V/m, (d,m)=1
deD

W{(p, 1)?
(5.21) = > 11 (—’—(-%%%);p > x(—n))

Bim<d<Vim, (d,m)=1 ];id
deh

Y reox(-n

Rjm<d<V/m ymod d

I

deD
where
I1 (——(—p—__l’—}?) if x =T, with x, € A{p) Vold, (ml, d) =1,
(X) pid p|d
0 otherwise.

By {5.17) we find for any positive number a and any de D:

(4(L(k _ 1))w(d)

(5.22) 3 TR S (k=) (H(pfl)g) S

xmod d pld

Now we get from {5.21}:

(5.23)
> ¢~ (d)A1(dyn, 1) Z Yoo > tfdx(=n),

B/m<d<V/im, (dm)=1 j=1 Q4. <d2Qy, ymod d
dED dCD
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e log P
where Qo =R/m, Q;=ai% j=1,... L, Ls Zlog log

We have for a fixed j by (5.22), Lemma 6.5 in [6] and Lemma 4.5 in [14}:
o > 2 ot
nE[(8/10}e,af | @i-1<42Q; xmod d
deD

« (3:]./2 +Q;/j) 22 (1og (mje))(jz—l)/Qj
(5.24)

(27--1)/25
X Z Z 23'/ Zj-1)
Q1 <dSQ;, xmod d
1 (lGA)“(‘f) {2j-1)/2j
s o (E-1)25 16k
<z (tog (a7e))” D i
QL . ,
Qi-1<d5Q;

1 (2~ 1)/23 iy

6k N ] 5 1)/25 - ] s

< (_—""“Ql/ a7y (log QJ)]”> z {log (z7e))¥ ! ij{%(log Q).
71

We deduce from (5.23) and (5.24)

> > c/fg(a!)Al(d., n,l)

(525) ;Q{_“_[ 9/10)'5 JJ] R/1n<c1<11/éi; {d,m)=

L

. o ) 9 ;

& mQJ]'/z(iog ) —l—:nT/s(log )32k E (log 1:3"*‘])('7 DI
g2

For the sum in (5.25) we get for a sufficiently small d

L o logP [, logP T
)< Dlog z)/%#<2 3 log P,
Z( - Z j+ 1oy T) log log = ( loglog x °8 m) <

J=2

yom this and (5.25) it follows together with the definition of Qo, m < RY/3
and a sufficiently small

> 3 672(d) Ay (d, n)

(5.26) 116{(9/10)$,${ R/-m<<i<\//m(d,m):l

< z(log x)** (P it +I’3m"1/8) & zP~,



318 C. BAUER

In order to finish the estimate of Fo{n, R}, we need the {ollowing result:

(5.27)
1 i
E ‘ =2l V| A ey . . w{n)
Izt s || (l+p—]> 11 (H (1!)—1}2) 2
mg /3 pEl pg P
meD Bln pin

Then (5.19), (5.26), (5.27) and 290 < 7 (n) <, nt imply

(5.28) Z ZFz(’f‘L, Pl & a P70,

nel(9/10)2,2] i=1
So from the last expression, (5.19) and (5.20) we derive for all but «
2170 ne [(9/10), 2], that satisfy the congruence conditions in (1.1):
o) Ty(n, Pfl;) < P71

for all I, 1 e {1,...,s}. By Lemma 4.3 (b) we get for Th{n, R} and v =
log log
2log P
gN\Y 9 - v EA(pan)E
To(n, ) £ Z (V) ¢ g) |Alg,n, D SV H 1+p W .

qeD pEP

By
VU g2

and ;
P’ £ (log 2)'7?,

it. foliows for a sufliciently small d:
Ty(n,R) S22 [ (1 y Hillog2) 7 ““‘)]/2)
(5.30) oy P
< a2 (log P)Wlog )/ = 1/3,
From (5.15), (5.29) and (5.30) the lemmna follows.
LEMMA 5.6. (a) For all n that satisfy the congruence conditions in (1.1)

11 (1 + M) > (log P)™*,

12
P (p—1}
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(b) For any two primitive characters x; (modgy) and o (mod qs), g3 =
i) S P and all v, which satisfy the congruence condition in (1.1)

11 (1+ (p, ><<H(1‘*"}"£“fﬂ>

pEP P
{myz)=1

' A‘((Js, T X1 X0, X?X(),qs)
$*{q3)

holds true.
Proor. (a) By 0<w(n,p) £ (k,p—1) and Lemma 4.4 (d):

11 (3 _ (w(”-’(?—_ﬁﬁ 1) S (1 - m_ﬂ) > (log P)™?

PP 2h<pipP

from which the lemma can be deduced by Lemma 4.4 {(a).

(b) If g3 =1, the lemma is obvious. For g3 » 1 we distinguish the cases
(i) gy =q3 and (i) 1 < gy <gz. In the case {i) we immediately get the desired
result from Lemma 4.4 {a) and {b) by

I (oo f0) I+ ).

PEP p<r
(9 g3)=1 -

t Ags, 1, X1X0 42y X2X 0,93 )
¢ 2{ga)

(i1) Analogously to (4.2) we have only to take into consideration such
. . £ ;
pairs g3 and ¢y, for which ( —@, q;) =1 and so, by Lemma 4.3 (b),
q1

g3
A(QS: "y X1X0,435 XQXG,(;:;) - A((Jla n, X1, XS)A (;}‘1‘7 i, XU,%:%. 3 Xﬁ) )

for certain characters s and yg. Since in (4.6
g4 G

0 a5 3/34e
A (;3‘”’))([] ﬁﬁ.}Xﬁ) < (—) E
a4 ' qi

furthermore, by Lemma 4.4 (a) and (d}

o Alpyn) )] ( 213)"1 w(8) (%)G
1+ ; < ] — — L2\l gy~
Il ( (p—1)2 11 p) = 0

i
)[7’511 [%ii,;uwlk

Using all this we get together with the result from (i}

Alp,n) N 1 A(g1,m, x1, X5)
11 (1 " {p - 1)2) - i *{(q1)

' AG3, 1 X1X0,310 X2X0.q2)
$*{qa)

PEP
(pyg )=l
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i 4 ; -
}U T‘L) A (f]i 3 7 X(},a?li ' X(}) A(p, ”)
% H g)—l) 2 (g H 1+G)~"1}2
#(8)

(;Jrn} 1

<[ (v ) (2) (2) (2) <L (- 222
4 i a1 w<P

pEP

6. The minor arcs
We obtain by Bessel’s inequality and the prime number theorem
Z oz, n)? §/ |5(c) Sy (0)Pda < 2 log x sup | Sk(a)|*.
(9/10)a8n<a e

By the definiton of the minor arcs and Theorem 1 in [4] we have

1 ak~1 14-¢
14c 1 1 Q 1/4 Tk
- - 3 : " R‘- J— A A T T
sup |5k (e)] €z (p RSy '1:) BT

Substituting this in the first estimate we obtain

$1+(2/k)+c
(6}.) Z ’Fz(.’ﬂ,'n)g 54 “ﬁm
(9/10)xE<n<a

7. The major arcs

Let us Suppob(, in the following [ € {1,k} and S{a) = Sj{«}. For a €
I{a,q) let =2 + 5. Because of ¢ < P and p > PP for all p appearing in Si(a}

we get in a wdl known way:

Silay= Y logpc( —p +np):}f;%m)" ) th (a;:)

(7 1) %E§P<\/W x nod ¢ k=1
y (Yogp ¢ () = —= 3 Ci(x,a)S
x(p)logp ¢ (') = 7 > G a)Silx. ).
—‘L{ES;K\/{: x modyg

Let L=Tifl=1and L=F ifl=%. Now Wi(x,n)} is defined in the following
way:
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(i) For x=x0, let

Wilx,n) = Silxogm) — L)+ Y L)
et U
{le)=0

(it} For x = xo,¢x" with x" € 0U%, X" # xo, let

Wil m) = Silxoex™s ) + Z Lo(n).

oco'UB
L{g,x*)=0

(iit) I all other cases let
Wilx,n) = Si{x,n)-

We obtain

a 1 i
S (5 +7;‘) m= e C{x0, @) L (1} + Dila, ¢, m) + Ei(a,q,m),

1 L
$(q) $(q) ¢{q)

where
Dila,gmy= Y, CF% aWilx, ),

x modg

Efa,q,n) = Z Z Ci(x0,4%, a)Lp(n).

XEIUE  sedlug
cond xlg L{p,x)=0

Writing W =W, E = Iy and D= D we obtain from (3.6) and (7.1)

; 1/Q
ri(z,n) = Z Z e (M:;n> / S (% -H) S (% o+ n) e(—nn)dn

¢S P a=1 _1/Q
1/Q

Z c/) Alg,n) / (M F{n)e(—nn)dn
g5t ~1/Q

g Ha

S o3 e () Gl [ TDk@ g el
iz P10 -1/Q
1/Q

+Z i e( %) (x0, @) / T{n) Exla, q,n)e{~nn)dny

[y
qs P q‘ u:l _]'I,Q
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1/Q
1 ‘. an o
Y gL (w—;;) Ci(x0, @) / () D(a, g, ne( )
qsP a=1 fll/Q
(7.2)
1 L G e
F Z 200 Z e (——(—) Cr(x0,a) / FmE(a,q,ne{—nn)dy
qs P 1= 170
, a HQ
1 . (BT .
+3 e (m—;w) Di(t, 4,7 Ear g, n)e(—nm)ely
gs a=1 -—i/Q
L 19
B o
+ 200 Z ¢ (——(—) / Dila, q,n)D{a,q,n)e(—nn)dn
qgP 1 ] -—]l,/'Q
. 7
1 an .
+ (};"("(m ¢ (——(—) Dia,q,0) B (a, q,n)e(—nn)dn
qsP ! am} S0
1/Q

g ' \
+ Y g e (-2 [ BeanBie get-nniy
~1/Q
mi 8) 4+ 59 4+ 83 4+ 5y + S5 + S5 + 57+ Sg + So.

In the following we only take into consideration such n & [(9/10)x, 2], that
satisfy the congruence conditions in (1.1).

8. The calculation of 5,~Sy

We first estimate Sy. Changing the summation over the characters ac-
cording to the inducing primitive characters, we get by Lemma 4.7 {a} and
Cauchy’s inequality:

1/
1 _ v
S4ZZW > Alg, X, xo) / FmyW (x, m)e(—nn)dn
qsr 1 ymodyg 7lt/Q

(8.1)

o i | _
<<.’17(J/k) (I/Z)Z Z Z |A{(J=”:XX0,(;:X0,(1)|

2
@
<Py modr P / (1)
- g=0(medr)
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10 1/2
x / W (x0,0%: 7?)|2d?7
—1/Q

Because of ¢ £ P and p> P we have W{xo 7 =W (x, 1), and so we gel
by (8.1) and Lemma 4.5

1/0 1/2
Sy < gV /K012 Z Z ) / |W (3, )| 2y
<Py modr ___}'/Q
1
(82) X LY Y iA(q1 77‘7;\7)(0, y X0,
qup (/)2 (Q) g fl)E
g=0{mod )
1/Q 1/2
<logad H T / W (x, )P dny
PSP xmodr w]‘/Q

We define now for an arbitrary primitive character y modi:

Lk 140
t4h Zlog,pMZl ifr=1,
4
¢ Z x(p)logp  ifr>L

Then we get by Demma 1 in 3] and the definition of W{x,n):

9
1/qQ

T
W (o, n)Pdn <</ 'ﬁx(p) logp| dt,

_1/’(,'62 L<p<11-§-
j<;u<1,

from which we get by (8.2):
Sy atl® 10?}_51:-;-1 & Z Z " max max  (h4 g P8

TPy modr afidtSe pLa Ptk

(8.3)

i

Z x(p) log pl .

2

Arguing exactly as in (19) in [1] we obtain for the last double sum

(8.4) SN« ot 1058 g g
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If we combine (8.3) and (8.4) and argue in the same way for Sg, where we
use the upper (3.1) for the number of the P-esceptional zeros over which is
summed in Sg, we obtain

§8kZ A1, 1/k Py 10g5k1+1,5 o

(8.5) S+ S &

10g8k2~-—5k—1,5 " P

Using Lemma. 4.7 {b) we get in the same way for Sy:

1/Q
=3 B0 Z > Algn XA, W) / W (x, 1) Wi (x1,m)e(—nm)dn
gz P \ mod gy modg ~1/Q
(8.6)
p Skl
53;;'2443’.1/21% wl-gk? ]/zloﬁ H"*")
19 1/2
x> > /iWk(Xl,n}IQdW
S P x1modrg ~1/Q

Arguing as in {8.3) and (8.4) we derive from this

.2 ) - gl gkt
(8.7) S7 (58}” g L/k log"h"']‘ —-8k? T 4 .___.-O}%_——x Wi,

where

Wy = Z Z max max 3 (h+ Ywp—ik=3y-1
1 i
71 SP x: modry mﬁﬂf hal /R T

y4-n
X Z xi(p)logp|,
]
and
(8.8) Wy, & 6%+ lop =8 ¢ 4 Pt

Combining (8.7) and {8.8) and arguing in the same way for Sz and Sg by
using again (3.1) we obtain
§8k+1, RYL pl/k 3()g5k—+--1,5 o

(8.9) Sy + 56+ 57 < iog”” 5, P
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For Sy we get by the Lemmas 4.5 and 4.9

1
Sy = Z ;/)—Q]GEA((;, n) / T I (ne(—nn)dn
0

(féfil
1/2

(8.10) o3 :/ﬂ;l(a]A(q,'ﬂw)I / |

a5k 1/Q

P{n)F(n)|dn

=g (n, P)L{z,n)+ O (rz:]/kp = ) .

Noting that in the sum defining S3 by (4.2} we only have to take into consid-
eration such ¢ with I cond x =g, for which (I, cond x) =1 holds, we obtain
in the same way as for 5:

1 _ P
Sy = — Z Z Z WA(T'} ”5X0,?‘:X)g (“: ";_":”‘) -Ll,,g(ﬂz‘:”)

r<P XEOUT  peoluf
(811) = ywmoder LQ(E,‘;)J:f()

+ O (rz:l/kp:f&) :
For the calculation of the remaining terms we define

0 ={oeUB: W<PRPL g =0 UG,
such that by {3.2):
(8.12) = B4y € O =3 [y > 16 R,

So we obtain
(8.13)
]/Q

1 _ NN
Ss== 2 D % e Al ) [ Tl Fe(-mn)ay

I o t5 0 |
XX L(Z,c;)l::o "‘":’dxm o
1 1/Q
sy oy :ﬁ(;u)nA(g, 1y X000 X0.0) / Ty(n) F(n)e{—nn)dny
el / -1/Q

Lig.x)=0 cond ¥[¢

=: 55,3 + S50
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We first get from Lemma 4.5, Lemma 4.10 and {3.1)

1 —
55,2 é Z z Z (/)2((1) EA((]J?': XX0,g5 XU,(;)[

x€l gl GSP
L{o)=0 cond xlg

(8.14) o
% / [T () " () ldny < Lk p2k

-1/Q
Arguing as for S3, we get by appealing again to (3.1)

85:_ Z Z Z Z/;QE(T)AUqa TIL:HXT:XU,:")

rEP XE0UT et
(8.15) xmod s e

r "
X0 (’-’b, -ﬁ‘) Lgi(z,n) +0 (m]'f”“.P = ) .
”
For Sy we get similarly to S

%=3 5 %% S -,—1(—)A<mm)

NEOUY  pee’  x1C€0UY pled’us PP
L{gx)e=0 L{g! iy ym0 [eondx, cond yg]=r

(8.16)

L= . Ak p =R
X O ('ﬂ,,?,’l’) Lygle,n)+0 (.’L P ) .

9. Proof of the theorem
We first notice that obviously
(9.1) |Lpo{X,n)j=1 Z (o — m*F)etme' =Y &g hgf gl

n-a:<1nk§n.--(u:/2)
ko .
#gm*( {‘/_’E

Arguing in exactly the same way as in {35) in [1] or in Lemma 2.1 in {8], we
obtain further that

03 LY T s (<) 4
pct’ gEt pled!

where in the sequel we will neglect 21/2 which in (9.10) will be shown to be
permissible. We define further

I = {7 = [ryr), r; = P-excluded module or exceptional module to I or 1},
G={reH, rzP/%,
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Then we derive from Lemmas 5.3 and 5.4 and (9 1) that for any two char-
acters x1{mod r1}, xa{mod rg) € {0UX Uxo,} with r=r,r]=, r€G,

1 P ;
(93) WI‘A(?J ﬂ':Xlxo,’n‘WXQXO,‘J')Hg(n: ?:7‘)”‘[’9;91 (1‘:“)[ «IEUAPM}/%G,
holds for all but <« xP~1/80 e [(9/10)z, z[. If - in view of (3.1) - we apply
Lemma 5.5 to all » € H \ & and note that # ¢ G for a sufliciently small A,
then for all n € [(9/10)z, z[ that satisfy the congruence conditions in {1.1)
and n & A{z) with {A(x )| L aP~ 80 log o)V 4 al0 & 510§, >0, there
holds by (7.2), (8.5), (8.9), (8.10), (8.11), (8.15) and (8.16):

7 (z,n) = H (1 + élj(f’{;)z) L{z,n)

psP
L Alp,n)
(,r n XuXU ) (1+w L (m 'ﬂ.)
RG] ' E (p—1)2) A1
(i F)=1
L Alp,n)
— s AR, 0, xo 6, X) (1+% L, 5{x,n)
#*(F) 7 H, (p—1)2) BN
(71,1?):1
] i Alpyn)
(9.4) + = A, 1, X, X) (1+ Ly a(zyn)
FeACmu0 11 (145750 75
(p,;:'v):]
— Alp,n A
=2 2 2 AtnToxer) ] (H“in)%) Lyi(2,n)
r<P x€f Cl?"\ﬁ q{) PpEpP (?)
?E( x modr 1(0)\) o (=1
— Alp,n
_Z Z E (r, 1 X005 X) H (l-f- (I’} l)L]_’g(m,n)
rEP O xed oG’ pEP (p_ )
rEG x modr I(QA) o (»)=1
1 e
S5 3ED D SIS SRR
XEOUY e x1€0UR ofeoluf rEP,PET,
L((’,x)l=0 L(gf!x)=() [cond x, cond x) J=r

(o.0' (5.

« 1 ( p’n))L&Qf(:z?,n)-i—O(...}

PSP
[CIRSEN

=Bt By + O PS4 a1k a20g %),

where we have used (3.1) for the caleulation of the error term. In the fol-
lowing s will be chosen fixed according to the preceding discussion. We first
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get by (9.1), (9.2) and Lemuma 5.6 (b)

B +BT<<[1’“"H<1_A ...... g.)__.”') Z ff]+zz [,’ ..... J ﬁ'l

PSP QC{)" {’COI Q"CU"
Alp, 1)
(9.5) < or cxp ( ) st (1 L A |
2b ;E” (p—1)?

We further derive from Lemma 4.1 (¢} and (d) that

o0 L= I (-850 T e

]}éP pEP {+mF=ninod #)
{n#)=1 1ghm g ({m,#)=1

In the same way as in the proof of Lerma 4.4 (b} we obtain for the characters
X1, X2 € {xo5 ¥}, which are not both equal to x¢5:

(9.7) AlF,m, X1, X2) =T Yoo xiWxe(m).

{4-mF Zn(imod 7)
12LmEF, (Im,7f)=1

S0 we get from (9.4), (9.6) and {(9.7)

B+ Bo+ By -+ 13y

- 11 (5 o

pEr
{(p,Fl=1
x((L(m,n)) Yoo t=Lgmmy Y &)
I4-mFzzn(mod 7) {gmkznimod 7)
1€LmEF, (fm7)=1 16 mg#, (lm,7)=1
~Lyplan) YD k) +Lgglen) Y] fc(ﬂ)fc(m))
H-mb =n(mod #} {m¥znimodF)
1gl,mE+,(Im,F)=1 18LmEF, (Im,7)=1
. Alp,n) 7
(9.8) = (z+ A
1 {1+ 5=m) 76
{piy=]

adbk=n lmAEn{mod 7)
%é!h{ﬂ: 1€, mEF, (b, 7}=1

b
s
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where in the last step we have again argued as in (9.7). If the Siegel zero g
exists, we get

1 pi-iz (1— B logP PY 1 2e14(1 = BYlog P = c146.

Applying this to (9.8) we obtain

By By By Bz %2 T {1+ ORI
PP (p_ﬁl)z

which, by (9.8), obviously also holds if A does not exist. So we get for a
sufficiently small b from the last inequality, (9.5) and Lemma 5.6 {a)

) . ' Alp 1 ) ol
(9.9) |By 4« + By| > 6% * H (1 - G;g_]—f’—%);) 567 3 820 B lop= 2k 4,
PSP

If 4 exists, we know by Lemma 3.1 and (3.4):

1
Pdkp3)a/ (442} log2 z

(9.10) 5 =((1—-PlogP)?»

Otherwise 6 = 1. We derive from (9.4), (9.9) and (9.10) that for A £
min (zﬁT, ‘%‘), n € [(9/10)z, x[\A(z) and n satisfies the congruence condi-
tions in (£.1):

riz,n) > 2 %62 log 2 .

We further conclude from (6.1) that
779 (:L, ,',L) << ,L.} /kP""l/"lk

for all but n & [(9/10)z, x{\B(z) with |B(z)| < gl p=6/1* 8o we get from
(3.6) and the upper bound for A

r{z,n) > 2 %% log ™%
for all but [A{z)U B(x)] < 2%, © >0 integers n € [(9/10)z, z[, that satisfy

the congruence conditions in (1.1). Splitting the interval {1, [ into intervals
of the type [T‘%t,t[, we gel the theorem.
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REMARK. The author would like to thank Professor Dr. T, Zhan and
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