
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Public Review for
Low Complexity, Stable Scheduling

Algorithms for Networks of Input Queued
Switches with No or Very Low Speed-up

Claus Bauer

This paper presents a number of new results in the area of switching performance. Prior work has demon-
strated that there are backplane scheduling algorithms (for input queued switches) that remain stable with
no speedup. However, as this paper points out, the complexity of these algorithms makes them impractical.
The algorithms that are currently practical require a speed-up in the backplane of at least a factor of two.

This paper describes new scheduling algorithms that can achieve stability without a speedup, with compar-
atively low complexity. The paper first builds approximate approaches that require a partial speed-up, and
then shows how these may be improved to obtain an algorithm which requires no speed-up. The proofs are
extended to networks of such switches, and the paper shows how to implement a distributed version of this
scheduling algorithm.

The reviewers all liked the paper raising no major issues, except that it was seen as perhaps a little more
incremental than is aimed for in CCR, as the results are built on a solid body of literature in this area.
However, increasing the practical throughput of switches by a factor of two appears to be quite a signifi-
cant improvement, worthy of appearing in CCR.

Public review written by

Matthew Roughan
The University of Adelaide

a c m s i g c o m m

ACM SIGCOMM Computer Communication Review 15 Volume 36, Number 3, July 2006

Low Complexity, Stable Scheduling Algorithms
for Networks of Input Queued Switches with No

or Very Low Speed-up

Claus Bauer
Dolby Laboratories
100 Potrero Avenue

San Francisco, 94103, USA
cb@dolby.com

ABSTRACT
The delay and throughput characteristics of a packet switchde-
pend mainly on the queueing scheme and the scheduling algorithm
deployed at the switch. Early research on scheduling algorithms
has mainly focused on maximum weight matching scheduling al-
gorithms. It is known that maximum weight matching algorithms
guarantee the stability of input-queued switches, but are impractical
due to their high computational complexity. Later researchshowed
that the less complex maximal matching algorithms can stabilize
input-queued switches when they are deployed with a speed-up of
two. For practical purposes, neither a high computational complex-
ity nor a speed-up of two is desirable.

In this paper, we investigate the application of matching algo-
rithms that approximate maximum weight matching algorithms to
scheduling problems. We show that while having a low compu-
tational complexity, they guarantee the stability of inputqueued
switches when they are deployed with a moderate speed-up.

In particular, we show that theimprove matching algorithm
stabilizes input-queued switches when it is deployed with aspeed-
up of 3

2
+ ǫ.

In a second step, we further improve on these results by propos-
ing a class of maximal weight matching algorithms that stabilize an
input-queued switch without any speed-up.

Whereas initial research has only focused on scheduling algo-
rithms that guarantee the stability of a single switch, recent work
has shown how scheduling algorithms for single switches canbe
modified in order to designdistributedscheduling algorithms that
stabilize networks of input-queued switches. Using those results,
we show that the switching algorithms proposed in this paperdo
not only stabilize a single switch, but also networks of input-queued
switches.

Categories and Subject Descriptors
C.2 [Computer-Communications Networks]: General —Data
communications; C.2.1 [Network Architecture and Design]: Packet-
switching networks

General Terms
Modeling of communication networks, performance analysis

Keywords
Scheduling algorithms, stability

1. INTRODUCTION
The development of fast transmission technologies such as Dense

Wavelength Division Multiplexing (DWDM) has led to an explo-
sive increase in the transmission capacity of network links. In
order to cope with the increased transmission capacities, network
switches and routers must be equipped with high-speed switching
and forwarding technologies. For this purpose, the choice of the
scheduling algorithm is a major design criteria of a switch as it
determines the throughput and delay characteristics of theswitch.
The scheduling algorithm defines a policy that determines which
packets are forwarded from the inputs of the switch to the outputs
of the switch and which packets are temporarily buffered at the in-
put side.

As purely output-buffered switches have shown to be impractical
due to the required high speed-up in the switching core, in this pa-
per we only consider input-queued (IQ) or combined input/output
(CIOQ) queued switches. A typical architecture of a IQ/CIOQ
switch is given in figure 1. For each inputi, there areN virtual
output queuesV OQi,j , 1 ≤ j ≤ N . The cells arriving at inputi
and destined for outputj are buffered inV OQi,j . The switching
core itself is modeled as a crossbar which requires that not more
than one packet can be sent simultaneously from the same input or
to the same output. Many switch architectures require the switch
to work at a speed-up ofS, S ≥ 1, which is defined as the ratio
between the potentially higher speed of the switching core and the
line-speed of the incoming (and outgoing) links.

VOQ_N,1

VOQ_N,N

Input N

VOQ_1,1

VOQ_1,N

Input 1

Switching Fabric

 Scheduler

Output 1

Output N

.....

Figure 1: Architecture of an IQ/CIOQ queued switch

As a first milestone in research on scheduling algorithms, McKe-

ACM SIGCOMM Computer Communication Review 17 Volume 36, Number 3, July 2006

own et al. [15] have shown that maximum weight matching(MWM)
algorithms stabilize input IQ/CIOQ switches when they are de-
ployed without speed-up, i.e.,S = 1. However, their high com-
putational complexity ofO(N3) does not allow their practical de-
ployment. As a less complex alternative, maximal matching (MM)
algorithms have been investigated and it has been shown thatthey
can stabilize IQ/CIOQ switches when they are deployed with a
speed-up ofS = 2. switches. The computational complexity of
a maximal weight matching algorithm isO(N2).

Due to the impracticality of even low speedups at high line
speeds, it is desirable to understand if scheduling algorithms exist
that are of low complexity and can stabilize switches at speed-ups
significantly smaller thanS = 2 or even without a speed-up. The
scope of this paper is to answer this question affirmatively and show
both, the existence of stable algorithms at speed-ups smaller than
S = 2 and in a second step the existence ofMM algorithms that
stabilize IQ/CIOQ switches without a speed-up, i.e.,S = 1.

In order to establish these results, we proceed as follows. In the
first step, we define a large class ofMWM algorithms and show
that they provide stability without speed-up. This investigation ex-
tends the work in [14] and is of independent interest, but also serves
us procedurally to prepare our investigation of low complexity al-
gorithms with low or no speed-up.

In a second step, we investigate the application of matchingal-
gorithms of low complexity that approximateMWM algorithms
as scheduling algorithms for IQ/CIOQ switches. Generalizing the
notion of a performance ratio from [11], we say that a matching
algorithm approximates aMWM algorithm withapproximation
parameters(c, d), 0 < c ≤ 1, d ≥ 0, if for any values of the
weights of the matching algorithm, the sum of the weight calcu-
lated by the matching algorithm and of the constantd is at least
c times as large as the optimal weight calculated by theMWM.
The cased = 0 reduces the definition ofapproximation parame-
ters to the concept of a performance ratioc as defined in [11]. The
cased > 0 describes the case when the weight of the considered
matching algorithm has to be increased byd in order to achieve a
performance ratioc.

We prove general results for matching algorithms that approx-
imate aMWM algorithm with approximation parameters(c, d).
We discuss two modes to deploy these algorithms in a IQ/CIOQ
switch. We show that in both modes, a deployment of the switch
with a rational speed-upS ≥ 1

c
is sufficient to guarantee the stabil-

ity of a IQ/CIOQ switch.
As a first application of these general results, we investigate four

known types of maximal matching algorithms that have a computa-
tional complexity ofO(N2). We derive a previously known result
that their deployment with a rational speed-upS ≥ 2 guarantees
the stability of a IQ/CIOQ switch. Compared to previous work[3],
[8], [6] that relied on a detailed analysis of the specificMM algo-
rithm under consideration, our analysis of approximationMWM
algorithms provides a unified framework to show the stability of
the four considered types ofMM algorithms.

As a second application, we discuss theimprove matching al-
gorithm from [11] that approximates aMWM algorithm with ap-
proximation parameters(2

3
− ǫ, 0) and has a computational com-

plexity of O(N2). Applying our general results on approxima-
tion algorithms, we show that this algorithm stabilizes a IQ/CIOQ
switch when it is deployed with a rational speed-up ofS ≥ 3

2
+ ǫ.

In the third step, we propose a class ofMM algorithms that sta-
bilize input IQ/CIOQ switches with a speed-upS = 1. In [19],
it has been shown that under the assumption that no twoV OQs
ever have the same occupancy, such a maximal weight matching
algorithm exists. In practice, this assumption can obviously not be

made. In contrast, this paper proposes the first maximal weight
matching algorithms that stabilize a IQ/CIOQ switch without any
speed-up and without assumptions on the occupancyV OQs. We
prove the stability of the proposed algorithm by further develop-
ing an idea from [19]: We first define, as described above, a large
class of maximum weight matching algorithms that guaranteethe
stability of a IQ/CIOQ switch. Then we show that a specific max-
imum weight matching algorithm out of this class is equivalent to
the maximal weight matching algorithm we propose. This equiv-
alence and the stability of the stability of theMWM algorithm
prove the stability of theMM algorithm.

The improvement of our work compared to the ideas proposed
in [19] derives from the specific choice of our weights. We define
weights of the maximal weight matching algorithm such that at any
point in time, no two weights are ever equal. This fact is crucial for
showing the equivalence of the maximal matching algorithm with a
specific maximum weight matching algorithm without making any
assumptions on the occupancy of theV OQs.

The early work on switch algorithms quoted above has investi-
gated stable scheduling algorithms for single IQ/CIOQ switches.
Later work [1],[4] has shown that scheduling algorithms that guar-
antee the stability of a single switch might lead to instabilities when
deployed in networks of IQ/CIOQ switches. In [1] and [4], switch-
ing policies that require the exchange of information between the
switches have been proposed. In [2], for the first time adistributed,
complex maximum weight matching algorithm that does not re-
quire the exchange of information between switches in the network
has been proposed. We apply the methods developed in [2] to the
design of the scheduling algorithms proposed in this paper.Conse-
quently, the scheduling algorithms proposed here do not only guar-
antee the stability of a single switch, but also stabilize networks of
IQ/CIOQ switches.

Specifically, we not only show that the proposed algorithms sta-
bilize networks of IQ/CIOQ switches when all switches deploy the
same scheduling algorithm, but we also prove that networks of
IQ/CIOQ switches where each switch deploys any of the schedul-
ing policies proposed in this paper are stable.

In conclusion, to the best knowledge of the author, this is the
first time that stability for a network of IQ/CIOQ switches could
be shown for a non-MWM algorithm with a speed-up strictly be-
low S = 2. In particular, the class ofMM algorithms proposed in
this paper satisfiesthe most common performance requirements on
a scheduling algorithm:It guarantees the stability of a network of
switches, it can be implemented in a distributed manner thatdoes
not require the exchange of information between the switches, it is
of feasible computational complexity, and it does not require any
speed-up.

In sec. 3 - 5, we first describe the proposed scheduling policies
in a non-distributed, centralized way, i.e., we will assumethat the
configurations of all switches are computed by a centralizedserver,
which sends each switch its specific configuration. In sec. 7,we
will then show how the algorithms presented in this paper canalso
be implemented in a distributed fashion, such that in each time slot,
each switch calculates its own configuration. The stabilityresults
proved in this paper hold for both a centralized and a distributed
implementation.

In the next section, we introduce a mathematical model of a net-
work of switches. In sec. 3, we propose scheduling algorithms
based on generalizedMWM algorithms and provide stability re-
sults for these algorithms. Stable scheduling algorithms based on
approximation algorithms are investigated in sec. 4. In sec. 5, we
present a class of maximal weight matching algorithms that guar-
antees the stability of a network of IQ/CIOQ switches when itis

ACM SIGCOMM Computer Communication Review 18 Volume 36, Number 3, July 2006

deployed with a speed-upS = 1. The stability of networks that
deploy a combination of different types of scheduling algorithms
at different switches is discussed in sec. 6. In sec. 7 we explain
how the algorithms proposed in this paper can be implementedin a
distributed manner throughout a network of switches. We conclude
in sec. 8.

We mention that parts of the work presented in Section 4 have
been described in a more condensed form in [5].

2. TERMINOLOGY AND MODEL

2.1 Model of a network of queues
In this section, we follow an approach in [2] to describe a model

of a queueing system. We assume a system ofJ physical queues
q̃j , 1 ≤ j ≤ J of infinite capacity. Each physical queue consists of
one or more logical queues, where each logical queue corresponds
to a certain class of customers within the physical queue. When-
ever a packet moves from one physical queue to another, it changes
class and therefore also changes logical queue. We denote a logical
queue byqk, 1 ≤ k ≤ K, whereK ≥ J. A packet enters the net-
work via an edge switch, travels through a number of switchesand
leaves the network via another edge switch. We define a function
L(k) = j that defines the physical queueq̃j at which packets be-
longing to the logical queueqk are buffered. We defineL−1(j) as
the counter-image through functionL(k), i.e., it returns the logical
queuesqk that belong to the physical queueq̃j .

Throughout this paper, the timet is described via a discrete, slot-
ted time model. Packets are supposed to be of fixed size and an
externaltime slot is the amount of time needed by a packet to ar-
rive completely at an input link. For a speed-upS ≥ 1, we define
an internal time slot as the amount of time needed for a packet to
traverse the switching core.

We define a row vectorXn = (x1
n, ..., xK

n), where thek-th
vectorxk

n represents the number of packets buffered in the logi-
cal queueqk at the beginning of then-th external time slot. We
defineEn = (e1

n, ..., eK
n), whereek

n equals the number of arrivals
at the logical queueqk in then-th external time slot. Analogously,
we defineDn = (d1

n, ..., dK
n), 0 ≤ dk

n ≤ S, wheredk
n expresses

the number of departed packets fromqk in then-th external time
slot. Thus, we can describe the dynamics of the system as follows:

Xn+1 = Xn + En − Dn. (1)

Packets that arrive at a logical queueqk either arrive from outside
the system or are forwarded from a queue within the system. Thus,
we can write:

En = An + Tn, (2)

whereAn = (a1
n, ..., aK

n) denotes the arrivals from outside the
system andTn = (t1n, ..., tK

n) denotes the arrivals from inside the
system.
We further define a routing matrixR = [ri,j], 1 ≤ i, j ≤ K,
whereri,j is the fraction of customers that depart from the logical
queueqi and are destined for the logical queueqj . Assuming a
deterministic routing policy, there holds,ri,j ∈ {0, 1},

max

0

@

X

1≤i≤K

ri,j ,
X

1≤j≤K

ri,j

1

A ≤ 1.

We setri,j = 1, if qj follows qi along the route. Noting that
Tn = DnR and writingI for the identity diagonal matrix, we find
from (1) and (2):

Xn+1 = Xn + An − Dn(I − R). (3)

We assume that the external arrival processes are stationary and
satisfy the Strong Law of Large Numbers. Thus,

lim
n→∞

n
P

i=1

Ai

n
= Λ w.p.1, (4)

whereE[An] = Λ = (λ1, .., λK) ,∀n ≥ 11.
We now calculate the average workload of the logical queues

qk which we denote byW = (w1, ..., wK). The expected traffic
arriving from outside the system is by definition equal toΛ. The
traffic that arrives at the logical queues after having passed through
m previous queues inside the network is by the definition of the
routing matrixR equal toΛRm. Noting that(I − R)−1 = I +
R + R2 + ..., we find that the overall average workload at the
logical queuesqk is given byW = Λ(I − R)−1.

Finally, we give a stability criteria for a network of queuesas
proposed in [2].

DEFINITION 1. A system of queues is rate stable if

lim
n−→∞

Xn

n
= lim

n−→∞

1

n

n−1
X

i=0

(Ei − Di) = 0 w.p.1.

Throughout this paper, whenever we talk about astablesystem, we
refer to the notion ofrate stabilityas given in definition 1.

A necessary condition for the rate stability of a system of queues
is that the average number of packets that arrive at any physical
queueq̃j during a time slot is less than 1. In order to formalize this
criteria, we introduce the following norm for a vectorZ ∈ R

K :

DEFINITION 2. For a vectorZ ∈ R
K , Z = (z1, .., zK), and

the functionL−1(k) as defined in this subsection, we set:

||Z||maxL = max
j=1,..,J

8

<

:

X

k∈L−1(j)

zk

9

=

;

.

If we apply this norm to the average workload vectorW, then
the expression||W ||maxL denotes the maximum average workload
over all physical queues̃qj . The necessary condition for rate stabil-
ity can now be formalized as follows:

||W ||maxL < 1. (5)

2.2 Model of a network of switches
In this section, we apply the terminology of the previous sec-

tion to a network of IQ/CIOQ switches. A network of IQ/CIOQ
switches can be conceived as a queueing system as defined in the
previous section where the virtual output queues correspond to the
physical queues. In this model we neglect the output queues of the
switches because instability can only occur at theV OQs (see [2]).

We say that packets that enter the network via the input of a given
switch and leave the network via the output of a given switch be-
long to the same flow. Packets belonging to the same flow travel
through the same sequence of physical queues and are mapped to
the same logical queues at each physical queue, i.e., a flow can be
mapped bi-univocally to a series of logical queues.

We assume that each logical queue behaves as a FIFO queue
and assume aper-flow scheduling scheme, which is more com-
plex than aper-virtual output queuescheduling scheme. In sec.
3 - 7 we prove the main results of this paper forper-flowschedul-
ing schemes. In [2], it has been shown howper flow scheduling
1Throughout the paper, we abbreviate ”with probability 1” by
”w.p.1”.

ACM SIGCOMM Computer Communication Review 19 Volume 36, Number 3, July 2006

schemes can be used to designper-virtual output queuescheduling
schemes.

The network consists ofB switches and each switch hasNb, 1 ≤
b ≤ B, inputs and outputs. If the total number of flows in the
system isT , we do not have more thanN2

b physical queues and
TN2

b logical queues at switchb. We can model the whole net-
work of switches as a system of

P

1≤b≤B

TN2
b logical queues. For

the sake of simplicity, we suppose thatNb = N, ∀b, 1 ≤ b ≤ B
and setK = TN2B. Finally, we defineQI(b, i) as the set of in-
dexes corresponding to the logical queues at thei-th input of the
b-switch. Analogously,QO(b, i) denotes the set of indexes corre-
sponding to the logical queues directed to thei-th output of theb-
switch. We further note that logical queues are defined per switch,
per virtual-output queue, and per flow. Thus, the indexk of any
logical queue in the network can be uniquely expressed ask =
TN2b + TNi + Tj + l, 0 ≤ b < B, 0 ≤ i, j < N, 0 ≤ l < T.
We use these definitions to adapt the norm||Z||maxL to a network
of switches that handle multiple flows at their inputs.

DEFINITION 3. Given a vectorZ ∈ R
K , Z = zk, k = TN2b+

TNi + Tj + l, 0 ≤ b < B, 0 ≤ i, j < N, 0 ≤ l < T the norm
||Z||IO is defined as follows:

||Z||IO = max
b=1,..,B
i=1,..,N

8

<

:

X

m∈QI (b,i)

|zm| ,
X

m∈QO(b,i)

|zm|

9

=

;

.

Throughout this paper we assume a deterministic routing pattern
defined by the routing matrixR and we call a traffic and routing
pattern that satisfies the necessary rate condition for stability as de-
fined in (5)admissible. Using definition 3, we can now rewrite the
condition (5) for a network of switches as follows:

DEFINITION 4. For a network of IQ/CIOQ switches, a traffic
and routing patternW is admissible if and only if:

||W ||IO = ||Λ(I − R)−1|| < 1. (6)

Without further mentioning, in the rest of this paper, we will only
consider traffic and routing patterns that satisfy the condition (6).

3. MAXIMUM WEIGHT MATCHING
POLICIES

3.1 Weight function
The scheduling policies introduced in this paper are based on

matching algorithms. Any matching algorithm is defined relative
to a specific weight. For the definition of the weights, we willmake
use of a family of real positive functionsfk(x) : N → R, 1 ≤ k ≤
K, that satisfy the following property:

lim
n→∞

fk(n)

n
=

1

wk
. (7)

We defined
k
(n) =

P

m≤n

dk
m as the cumulative number of services

at queueqk up to timen. Here, we assume that all switches start
service at the same timem = 0 and all switches continuously work
until timen. We define the weight of the queueqk at timen as

φk
n = n − fk(d

k
(n)) + c, (8)

wherec is a given constant, and we setΦn = (φ1
n, .., φK

n). This
choice of the weights is motivated by the fact that it will allow us
to derive the relation (23) in the appendix, which in turn is used for
the proof of the rate stability in Theorems 1 and 2. The constant c

is chosen as follows: We see from (7) that there exists a constantc
such that

fk(d̄k
n) ≥

d̄k
n

wk
− c. (9)

As the cumulative departure rate is less than the cumulativearrival
rate, there holdslimn→∞ d̄k

n ≤ wkn. Both estimates imply that
for a c chosen as in (9) the weightφk

n is always positive. This fact
is used in the proofs of Theorems 1 and 2 in the appendix. For
further usage, we note that the relations (7) and (8) imply that for
any given positive integerv, there is

˛

˛

˛φ
k
n − φk

n+v

˛

˛

˛ ≤ c2(v), (10)

wherec2(v) is a positive constant depending onv.
In [2], an example forfk(n) is given. The cumulative function

of external arrivals for the logical queueqk is given byak(n) =
P

m≤n

ak
m. The inverse function[ak]−1(p) maps the packet num-

ber p to the time slot in which the packet arrived externally to
the network. Settingfk(p) = [ak]−1(p), the weightφk

n = n −
[ak]−1(p) + c denotes the age of thep-th packet at timen,i.e., the
amount of time the packet has spent in the network, plus the con-
stant c. At its departure time from the networkn, the age of the

p-th packet isn − [ak]−1(d
k

n).

3.2 Definition of maximum weight matching
algorithms

In this section, we define a class of maximum weight match-
ing policies that guarantee the stability of a network of IQ/CIOQ
switches. This class of policies is an extension of the policies de-
fined in [14]. This extension is not only of interest in itself, but is
necessary to prove the stability of a class ofMM algorithms de-
ployed without speed-up as specified in Theorem 5 below.
We define a set of functionsG :

DEFINITION 5. A real functionF : R → R is said to belong to
the setG if
a) F is monotonically non-decreasing,F (0) = 0, F (x) > 0 if
x > 0.
b) Ḟ (x) exists for allx > 0.
c) F (x) → ∞ for x → ∞.

For a fixed set of functionsF1, .., FK ∈ G, we define the functional
weights

Ḟk(φk
n), 1 ≤ k ≤ K. (11)

Furthermore, we define the following vector function via thefunc-
tionsF1, .., FK and their derivatives:

VḞ (Φ(n)) :=
“

Ḟ1(φ
1
n), ..., ḞK(φK

n)
”

.

We write the scalar product for two vectorsv1 andv2 as〈v1, v2〉 =
v1v

T
2 . We define a scheduleπ = (π1, ..., πK) of a switch as the

chosen configuration of the switch core. Ifπk = 1 then the logical
queueqk is connected to its output. In contrast ifπk = 0, then the
logical queueqk is not connected to its output.

We define a scheduling algorithmMWMVF as follows: At each
time t, the scheduling algorithmMWMVF chooses the schedule
πVF which is defined by the following equation:

πVF (n) = arg max
π

〈π, VḞ (φ(n))〉, (12)

where the maximization is taken over all possible schedulesπ. This
maximization problem is solved using the Hungarian method and

ACM SIGCOMM Computer Communication Review 20 Volume 36, Number 3, July 2006

has a complexity ofO(K3). We write the weight of the matching
chosen by aMWMVF algorithm as defined in (12) as

Dn(MWMVF)(VḞ (φ(t)))T = max
Dn

Dn(VḞ (φ(t)))T .(13)

We formulate the main result of this section:

THEOREM 1. For any set of functionsF1, .., FK ∈ G, a net-
work of IQ/CIOQ switches that implements aMWMVF schedul-
ing policy is stable under admissible traffic.

Proof: The proof is given in the appendix.
For further usage, we state the following corollary:

Corollary 1: If in (8) the weights are defined as[φn
k + 1] instead

of φn
k , where[x] denotes the biggest integer smaller than or equal

to x, then Theorem 1 still holds.
Proof: The proof is nearly identical to the proof of Theorem 1.

4. APPROXIMATIONS TO THE
MWM - ALGORITHM

In this section, we introduce local scheduling policies that are
based on algorithms that approximateMWM algorithms.

4.1 Definition of an approximation
MWM algorithm

We formally define an approximationMWM algorithm as fol-
lows.

DEFINITION 6. For a scheduling algorithmALGO that ap-
proximates aMWMVF algorithm - as defined in (12) - with ap-
proximation parameters

`

a
b
, d

´

, a, b ∈ N, a and b prime to each
other, there holds

Dn(ALGO)(VḞ (φ(t)))T

≥
a

b
Dn(MWMVF)(VḞ (φ(t)))T − d, (14)

whereDn(ALGO) denotes the matching chosen by the algorithm
ALGO.

4.2 The deployment of approximation
algorithms in a switching core

We consider approximation algorithms that approximate a
MWM algorithm with approximation parameters

`

a
b
, d

´

. Without
further mentioning it, we always assume thata ≤ b, wherea andb
are prime to each other. To compensate for the factora

b
, we propose

to deploy all approximation algorithms with a rational speed-up of
S = b1

a1
≥ b

a
. We propose two different modes to implement an

approximation algorithm in a IQ/CIOQ switch.
We extend the notation introduced in sec. 2 as follows: We de-

fine X
n+

da1

b1

, 0 ≤ d ≤ b1 − 1, as the vector the entries of which

are the number of packets buffered in the logical queues at time
n + da1

b1
. For everyn satisfyingn ≡ (0 moda1), time n + da1

b1

denotes the beginning of the(d + 1) -th internal time slot after the
then-th external time slot.D

n+
da1

b1

expresses the number of pack-

ets departing in the(d+1)-th internal time slot of then-th external
time slot, andE

n+
da1

b1

is defined analogously.

In themode keep, the scheduling algorithm computes a match-
ing at the beginning of a time slotn ≡ (0moda1). It keeps the
matching constant until the beginning of the time slotn+a1, when
a new matching is calculated. In the interval[n, n + a1), up tob1

cells are forwarded at equally spaced time intervals of length a1

b1
.

For themode keep, the evolution of the queue lengths is described
as follows:

X
n+

da1

b1

= Xn − dDn(ALGO)

+
X

0≤c<
da1

b1

En+c + Dδ , 1 ≤ d ≤ b1,

whereDδ = max

„

0, dDn − Xn −
P

0≤c<
da1

b1

En+c

«

. Here,0 is

the vector withK elements with all entries equal to zero and the
maximum is taken for each vector entry separately. Ifdk

n = 1, the
entry dk

δ denotes the difference between the number of cells that
have been forwarded in the interval[n, n + da1

b1
), and the number

of internal time slotsd in the interval. Ifdk
n = 0, thendk

δ = 0.
In the mode reconfig, a new matching is computed in every

internal time slot, i.e., everya1

b1
external time slots, and cells are

forwarded accorded to a calculated matching at most once. The
queue evolution for themode reconfig is described as follows:

X
n+

da1

b1

= Xn −

d−1
X

e=0

Dn+
ea1

b1

(ALGO)

+
X

0≤c<
da1

b1

En+c + Gδ, 1 ≤ d ≤ b1,

whereGδ is a vector withK elements where each entry is an in-
teger between0 and b1. If at time n, there holdsxk

n ≥ b1, then
there isgk

δ = 0. If at time n, there holdsxk
n < b1, then de-

pending on theV OQ lengthxk
n at timen and the arrival patterns

ek
n+c, 0 ≤ c ≤ d − 1, in the interval[n, n + da1

b1
), the switch

might not always be able to forward a packet fromV OQi,j even if
the scheduling algorithm prescribes so becausedk

n+
da1

b1

= 1. The

valuegk
δ equals the number of instances where this happens for the

V OQi,j and thus takes valuesc in the range0 ≤ c ≤ b1.
The mode keep mode requires less computations than the

mode reconfig mode. However, themode reconfig reacts faster
to the changing lengths of theV OQ. Applying the analysis from
[16], one can show that themode keep mode leads to larger aver-
age package delays at theV OQs than themode reconfig mode.

In order to state the main result of this paper, we define a the set
of functionsG∗ as a subset of the setG defined in section 3.2:

DEFINITION 7. A real function F: R → R belongs to the set
G∗ if
a) F∈ G.
b) F̈ exists and for any fixed positive constantc,

lim
x→∞

max
t∈[x−c,x+c]

F̈ (x)

Ḟ (x)
= 0. (15)

Now, we state the main result of this paper:

THEOREM 2. We consider a network of IQ/CIOQ switches that
implements an approximationMWMVF algorithm with approxi-
mation parameters(a

b
, d), with functional weightsFk(φk

n) as de-
fined in (11), and where the functionsFk ∈ G∗. Assuming admissi-
ble traffic, the network is stable when theMWMVF algorithm is
deployed in eithermode keep or mode reconfig with a rational
speed-up ofS = b1

a1
≥ b

a
.

Proof: The proof is given in the appendix.

ACM SIGCOMM Computer Communication Review 21 Volume 36, Number 3, July 2006

4.3 Examples of approximation algorithms

4.3.1 Maximal matching algorithms
The most common approximation algorithms to aMWM algo-

rithm are variations of maximal matching algorithms. A maximal
matching is a matching that is not properly contained in any other
matching of the graph.

The greedy maximal matching algorithm works similar to a gen-
eral maximal matching as explained in [12]. It differs from agen-
eral maximal matching algorithm by not choosing an arbitrary edge
at each step, but picking the heaviest edge currently available in-
stead. It has approximation parameters(1

2
, 0). A specific imple-

mentation for switches that deploy aper − V OQ queueing and
scheduling discipline is proposed in [3]. We generalize this imple-
mentation to aper−flow queueing discipline as considered in this
paper as follows:

DEFINITION 8. For a given inputi and a given outputj at a
given switchb, we define the set of all logical queues that either
belong to the inputi or that are directed to the outputj. We set
∀b, i, j, 1 ≤ b ≤ B, 1 ≤ i, j ≤ N,

Sb,i,j :=
n

m : 1 ≤ m ≤ K, m ∈ QI(b, i)
[

QO(b, j)
o

.

For a set of positive weightsP k, 1 ≤ k ≤ K, whereP k is the
weight assigned to the logical queueqk, we now formally define a
maximal weight matching algorithm as follows:

1. Initially, all logical queuesqk, 1 ≤ k ≤ K, are considered
potential choices for a cell transfer.

2. The logical queue with the largest weight, sayqk0 , is chosen
for a cell transfer and ties are broken randomly. We assume
without loss of generality thatk0 ∈ QI(b1, i1) and k0 ∈
QO(b1, j1).

3. All logical queuesqk with k ∈ Sb1,i1j1 are removed.

4. If all qk are removed, the algorithm terminates. Else go to
step2.

Preis [17] presented another linear time approximation algorithm
for aMWM algorithm with approximation parameters(1

2
, 0). The

main idea is to replace the heaviest edge needed by the greedyal-
gorithm with a locally heaviest edge.

A different approach is used by Drake and Hougardy in [9]. The
main idea of the proposed algorithm is to grow in a greedy way
two matchings independently and to return the heavier of both as a
result. Again, this algorithm has approximation parameters (1

2
, 0).

In [10], the same authors propose local improvements to a given
matching as a postprocessing step to enhance the performance of
the approximation algorithm for theMWM problem in practice.
The postprocessing does not improve the approximation parame-
ters(1

2
, 0).

Using the fact that all algorithms discussed in this sectionap-
proximate theMWM algorithm with approximation parameters
`

1
2
, 0

´

, we deduce from Theorem 2:

THEOREM 3. For admissible traffic, the maximal matching al-
gorithms described in this section stabilize a network of IQ/CIOQ
switches when they are deployed in eithermode keep or
mode reconfig with a rational speed-upS ≥ 2 and the func-
tional weights are chosen as in (11).

Thus, among others, we provide a new way to prove that greedy
maximal weight matching algorithms are stable with a rational speed-
up ofS ≥ 2 as shown in [3]. The maximal matching algorithms de-
scribed in this section have a complexity of at mostO(K2 log K).

Algorithm improve matching

(G = (V, E), w : E → R
+, M)

1 makeM maximal

2 M ′ := M

3 for e ∈ M do begin

4 if there exists aβ-augmentation inM ′ with

with centere

5 then augmentM ′ by a goodβ-augmentation

with centere

6 end

7 return M ′

Figure 2: The improve matching algorithm

4.3.2 Theimprove matching algorithm
We give a short overview of the main structure of the algorithm

and refer the reader for the missing details to [11]. We assume that
the reader is familiar with standard graph theoretic terminology as
used in [11].

The idea of theimprove matching algorithm is first to use
standard techniques to expand a given matching to a maximal match-
ing (if the given matching is not already maximal) and then tomake
local improvements via appropriate augmentations to the maximal
matching. In particular, theimprove matching algorithm consid-
ers only local improvements that are obtained viashort augmenta-
tions. A short augmentationis defined as an augmentation such
that all the edges in the augmenting set are adjacent to a specific
edge of the graph.

Furthermore, the algorithm does not consider allshort augmen-
tations, but only considersβ-augmentations, which are defined as
those short augmentations that lead to a local gain of a factor of at
leastβ, whereβ is a fixed constant> 1. In a particular instant, there
might be more than one possibleβ-augmentation. Intuitively, it is
desirable to choose theβ-augmentation that produces the biggest
gain. However, for the purpose of theimprove matching al-
gorithm, it is sufficient to choose agood β-augmentation.A β-
augmentation is calledgood if it achieves at least(β − 1)/(β − 1

2
)

fraction of the gain that the best localβ-approximation can achieve.
We now formally define theimprove matching algorithm in

figure 2. First, the input matchingM is made maximal (if neces-
sary) and then no further changes are made toM. Instead,M is
copied toM ′ and all local augmentations are done with respect to
M ′. The algorithm visits each edgee ∈ M only once, and if it
finds anyβ-augmentation set at this edge inM ′, it performs a good
β-augmentation centered ate in M ′. In [11], it is shown that the
the complexity of theimprove matching is linear in the number
of edgesE, i.e.,O(K2).

In order to achieve approximation parameters
`

2
3
− ǫ, 0

´

the
improve matching algorithm is applied iteratively. We first use
a maximal matching algorithm (see sec. 4.3.1) to calculate amax-
imal matchingM0 with a weightw(M0) ≥ 1

2
w(Mopt), where

Mopt denotes a maximum weight matching of the graphG =
(V, E). We then apply theimprove matching algorithm to the
matchingM0 to obtain a matchingM1 and then iteratively apply
the algorithm to the matchingMi to obtain a matchingMi+1. It is
shown in [11] that at mostO

`

1
ǫ

´

iterations are required to achieve
approximation parameters

`

2
3
− ǫ, 0

´

. Thus, we deduce from The-
orem 2:

ACM SIGCOMM Computer Communication Review 22 Volume 36, Number 3, July 2006

THEOREM 4. The iteratedimprove matching algorithm de-
fined with functional weights as in (11) stabilizes a networkof
IQ/CIOQ switches under any admissible traffic when it is deployed
with a rational speed-upS ≥ 3

2
+ǫ in both modesmode keep and

mode reconfig.

5. MAXIMAL WEIGHT MATCHING
ALGORITHMS WITHOUT SPEED-UP

5.1 A stable maximal weight matching algo-
rithm

In this section we define a class of maximal weight matching
algorithmsMMVG that guarantee the stability of a network of
switches when they are deployed without a speed-up. A maxi-
mal weight matching algorithm with general weights has beende-
scribed in sec. 4.3.1. Thus, in this section we only have to define
the specific weights of the class of algorithmsMMVG .

We consider a set of functionsgi, 1 ≤ i ≤ K that belong to the
setG defined in sec. 3.2. We also require that fori 6= j and for
any pair of two not necessarily different integersa andb ∈ N, there
holds

gi(a) 6= gj(b). (16)

We define the functional weight of the queueqk as

Gk

“

φk(n)
”

:= exp
“

g
“h

φk(n) + 1
i””

, (17)

whereexp(x) is the exponential function. We note that the func-
tionsGk in (17) correspond to the functionṡFk in (11). Thus, the
functionsFk(x) ∈ G introduced in sec. 3.2 correspond to the func-

tions
x
R

0

Gk(t)dt.

We now give an example for a set of functionsgk. A square-free
number is defined as a natural number that cannot be divided by
the square of any other natural number. We denote bys1 < s2 <
... < sK as the firstK square-free numbers in increasing order.
For a fixed even natural numberm, we then define the function
gk(x) asgk(x) = skxm. The definition of the weights ensures that
(16) always holds. This is true because for any two differentlogi-
cal queuesk andl, i.e., k 6= l, there exist a prime numberp such
that the largest power ofp that dividessk([φk(n) + 1])m is odd,
whereas the largest power ofp that dividessl([φ

l(n)+1])l is either
even or equal to zero. In a specific implementation, the numbers si

could be chosen as the firstK prime numbers.
We now state the main result of this section:

THEOREM 5. A network of IQ/CIOQ switches that implements
a MMVG . scheduling policy with a speed-upS = 1 and the func-
tional weights as defined as in (17) stabilizes a network of IQ/CIOQ
switches under admissible traffic

Proof: The proof is given in the appendix.

6. NETWORKS OF IQ/CIOQ SWITCHES
WITH DIFFERENT SCHEDULING
POLICIES

In sec. 3 - 5, we considered networks of IQ/CIOQ switches
where all switches deploy the same scheduling algorithm. Asa
further extension, we show that a network of switches, whereeach
switch in the network deploys any of the switching policies de-
scribed in sec. 3 - 5, is stable as well:

THEOREM 6. A network of IQ/CIOQ switches where each switch
deploys any of the scheduling algorithms defined in Theorems1 - 5
is stable under admissible traffic.

Proof: The proof is given in the appendix.

7. DISTRIBUTED IMPLEMENTATION OF
THE ALGORITHM

The scheduling algorithms as defined in sec. 3, 4, and 5 for-
mulate the scheduling problem as an optimization problem that
takes into account all logical queues of the network. Thus, these
formulations assume the existence of a centralized scheduling al-
gorithm that always knows the state of the whole network. This
seems to contradict the purpose of the paper to investigate dis-
tributed scheduling policies, in which each switch only considers
the logical queues at its ownV OQs. In this section, we describe
how the centralized scheduling policies proposed in sec. 3-5 can
be implemented in a distributed manner.

We first considerMWM scheduling policies. The maximiza-
tion in (12) is subject only to the crossbar constraint: In each time
slot, at each switch at most one cell can be sent from each one
input and at most one cell can be sent to each output. However,
a switch configuration at a specific switch does not constrainthe
choice of the switch configuration at another switch. Thus, we split
the weight vectorΦ into B weight sub-vectorsΦ = (Φ1, .., ΦB),
where the sub-weight vectorΦb contains the logical queues at the
b-th switch. Accordingly, we split the vectorVF in B sub-vectors
VF = (VF,1, .., VF,B). Thus, the maximization in (12) can be writ-
ten as:

πVF

(n) = arg max
π

〈π, VḞ (φ(n))〉

=

B
X

b=0

arg max
πb

〈πb, VḞ ,b(Φb(n))〉,

whereπb is the schedule chosen at theb-th switch. The maximiza-
tion problemmax

πb

˘

〈πb, VḞ ,b(φb(n))〉
¯

can be solved solely at the

b-th switch.
With regard toMWM approximation algorithms the same ar-

gument applies. Again, the approximation algorithm is executed
separately at each switch in the network as the crossbar constraint.
Finally, the same argument shows how the class of maximal match-
ing algorithmsMMVG can be implemented in a distributed man-
ner.

8. CONCLUSIONS
This paper examinesdistributedscheduling algorithms of low

complexity that stabilize networks of IQ/CIOQ switches with low
or no speed-up and that do not require any coordination between
the switches in the network.

First, we consider a generalized class ofMWM algorithms that
stabilize networks of IQ/CIOQ switches. Then, we investigate the
application of approximationMWM algorithms scheduling algo-
rithms for networks of IQ/CIOQ switches. We show thatMWM
approximation algorithms guarantee the stability of networks of
IQ/CIOQ switches under specific speed-up requirements. Apply-
ing these results, we show that theimproved matching algorithm
guarantees the stability of a network of IQ/CIOQ switches when it
is deployed with a rational speed-upS ≥ 3

2
+ ǫ.

Second, we propose a maximal matching algorithm that satisfies
the most common performance requirements on a scheduling algo-
rithm: It guarantees the stability of a network of switches,it can

ACM SIGCOMM Computer Communication Review 23 Volume 36, Number 3, July 2006

be implemented in distributed manner that does not require the ex-
change of information between the switches, it is of feasible com-
putational complexity, and it does not require any speed-up.

Finally, we prove that networks of IQ/CIOQ switches where each
switch deploys any of the scheduling algorithms presented in this
paper are stable.

9. REFERENCES
[1] Ajmone, M.M., Leonardi, E., Mellia, M., Neri, F.,On the

throughput achievable by isolated and interconnected
input-queued switches under multiclass traffic,Proc. of
Infocom 2002, New York City, June 2002.

[2] Ajmone, M.M., Giaccone, P., Leonardi, E., Mellia, M., Neri,
F.,Local scheduling policies in networks of packet switches
with input queues,Proc. of Infocom 2003, San Francisco,
April 2003.

[3] Ajmone M.M., Leonardi, E., Mellia, M., Neri, F.,On the
stability of input-buffer cell switches with speed-up,Proc. of
Infocom 2000, Tel Aviv, March 2000.

[4] Andrews, M., Zhang, L.,Achieving stability in networks of
input queued switchs,Proc. of Infocom 2001, Anchorage,
Alaska, April 2001.

[5] Bauer, C.,Approximations to maximum weight matching
scheduling algorithms of low complexity,AICT 2005,
Lisbon, Portugal.

[6] Bauer, C.,Throughput and delay bounds for input buffered
switches using maximal weight matching algorithms and a
speed-up of less than two,Proc. of ICOIN 2004, Pusan,
Korea, Springer LNCS 3090.

[7] Dai, J.G., Prabhakar, B.,The throughput of data switches
with and without speed-up,Proc. of IEEE Infocom 2000, Tel
Aviv, March 2000.

[8] Benson, K.,Throughput of crossbar switches using maximal
weight matching algorithms,Proc. of IEEE ICC 2002, New
York City.

[9] Drake, D.E., Hougardy, S.,A simple approximation
algorithm for the weighted matching problem,Information
Processing letters 85 (2003), 211-213.

[10] Drake, D.E., Hougardy, S.,Linear time local improvements
for weighted matchings in graphs,WEA 2003, LNCS 2647,
Seiten 107-119, 2003.

[11] Drake, D. E., Hougardy, S.,A linear time approximation
algorithm for weighted matchings in graphs,ACM
Transactions on Algorithms, 1(1), pages 107-122.

[12] Gabow, H.N., Tarjan, R.E.,Faster scaling algorithms for
general graph-matching problems,J. ACM 38:4, 1991,
815-853.

[13] Gabow, H.N.,Data structures for weighted matching and
nearest common ancestors with linking,SODA 1990, 434 -
443.

[14] McKeown, N., Keslassy, I.,Analysis of scheduling
algorithms that provide100% throughput in input-queued
switches,Proceedings of the 39th Annual Allerton
Conference on Communication, Control, and Computing.
Monticello, Illinois, October 2001.

[15] McKeown,N., Mekkittikul, A., Anantharam, V., Walrand, J.,
Achieving 100% throughput in an input queued switch,IEEE
Trans. on Communications, vol. 47, no. 8, Aug. 1999, 1260 -
1272.

[16] Neely, M.M., Modiano, E., Rohrs, C.E.,Tradeoffs in Delay
Guarantees and Computation Complexity for NxN Packet

Switches,Proc. of the Conf. on Information Sciences and
Systems, Princeton: March 2002.

[17] Preis, R.,Linear time 1/2 approximation algorithm for
maximum weighted matching in general graphs,Symposium
on Theoretical Aspects of Computer Science (STACS) 1999,
Springer LNCS 1563, 259 - 269.

[18] Shah, D., Kopikare, M.,Delay bounds for approximate
maximum weight matching algorithms for input queued
switches,Proc. of IEEE Infocom 2002, New York City, June
2002.

[19] Shah, D,;Stable Algorithms for input queued switches,Proc.
39th Annual Allerton Conference on Communication,
Control and Computing, Oct. 2001.

10. APPENDIX

10.1 The fluid methodology
For the proofs of the Theorems 1, 2, and 5, we use the fluid

methodology and its extension given in [2] and [7]. Applyingthe
definitions introduced in sec. 2, we define the three following con-
tinuous vector functions:

• X(t) = (X1(t), ..., XK(t)) denotes the number of packets
in the logical queues at timet.

• D = (D1(t), ..., DK(t)) denotes the number of packet de-
partures from the logical queues until timet.

• A = (A1(t), ..., AK(t)) denotes the number of packets ar-
rivals at the logical queues until timet.

We consider a specific scheduling algorithmF and we defineΠF =
{πF} as the set of all possible network-wide matchings chosen by
F . For all πF ∈ ΠF , we denote byTF

π (t) the cumulative amount
of time that the matchingπF has been applied until timet by the
algorithmF . Obviously,TF

π (0) = 0 ∀πF ∈ ΠF . Using (3), we
obtain the fluid equations of the network of IQ/CIOQ switchesas
follows:

X(t) = X(0) + Λt − D(t)(I − R), (18)

D(t) =
X

πF∈ΠF

πFTF
π (t), (19)

X

πF∈ΠF

TF
π (t) = t. (20)

The first equation models the evolution of the logical queues,
whereas the second equation counts the total number of departures
from theV OQs. The third equation reflects the fact that in each
time slot each input is connected to some output. Taking the deriva-
tives, we derive from (19) and (20):

Ḋ(t) =
X

πF∈ΠF

πF ṪF
π (t), (21)

X

πF∈ΠF

ṪF
π (t) = 1. (22)

Applying the fluid methodology further, we define a continuous
version of the weightsΦn - defined in(8) - asΦ(t).

10.2 Proof of Theorem 1
First, we state an algebraic relation which we will use for the

subsequent proof. We note that by (7)lim
t→∞

fk(t) → t/wk. Thus,

by (8) andd
k
(t) → ∞ for t → ∞, we obtain

φk(t) → t −
d

k
(t)

wk
+ c, (23)

ACM SIGCOMM Computer Communication Review 24 Volume 36, Number 3, July 2006

from which we obtain by taking the derivative on both sides:

Φ̇(t) = I − Ḋ(t)Γ−1, (24)

where we defineΓ = [γ(i,j)] as the diagonal matrix withγ(k,k) =
wk, and letΓ−1 be the inverse ofΓ. Then, we setH(x) = ΓVF (x), x ∈
R

K and define the Lyapunov function:

G(t) = 〈I, H(Φ(t))〉,

We want to show that∀t ≥ 0,

||Φ(t)||IO ≤ B, (25)

for a certain constantB > 0. We see that if

d

dt
G(t) ≤ 0 (26)

∀t such that ||Φ(t)||IO > C, then there holds
G(t) ≤ max

s, ||G(s)||IO≤C
G(s), which by c) in definition 5 implies

(25) for a certainB > 0. Thus, we will show (26) in order to prove
(25). Now (26) follows from (24), (21), and (22):

d

dt
G(t)

=
d

dt
〈1, H(Φ(t))〉

= 〈Φ̇(t), ΓVḞ (Φ(t))〉

= 〈I − Ḋ(t)Γ−1, ΓVḞ (Φ(t)))〉

= 〈W, VḞ (Φ(t))〉 − 〈Ḋ(t), VḞ (Φ(t))〉

= 〈W, VḞ (Φ(t))〉 − 〈
X

πVF ∈ΠVF

πVF Ṫ VF
π (t), VḞ (Φ(t))〉

= 〈W, VḞ (Φ(t))〉 −
X

πVF ∈ΠVF

Ṫ VF
π (t)〈πVF (t), VḞ (Φ(t))〉

= 〈W, VḞ (Φ(t))〉 − 〈πVF (t), VḞ (Φ(t))〉

≤ 0.

The last inequality follows from (12) and by an argument in [15].
We see from (23) and (25):

0 < t −
d

k
(t)

wk
+ c ≤ B.

This implies lim
t→∞

d
k
(t)
t

= wk, i.e.,

lim
t→∞

D(t)

t
= W, w.p.1, (27)

which corresponds to the rate stability condition ofX(t) according
to definition 1.2

10.3 Proof of Theorem 2

10.3.1 Lower bounds for the weights calculated by
approximation algorithms

In this section, we define lower bounds for the weight calculated
by an approximation algorithm deployed with a rational speed-up
b1
a1

> b
a

in eithermode keep or mode reconfig. We will need
these lower bounds for the proof of Theorem 2 in sec. 10.3.2. For
our investigations, we consider the weight of all matchingscalcu-
lated ina1 successive time slots[n, n+a1) by an approximation al-
gorithm with approximation parameters(a

b
, d) in mode keep. We

find

b1−1
X

d=0

Dn(ALGO)V T

Ḟ
(Φ

n+
da1

b1

)

= b1Dn(ALGO)V T

Ḟ
(Φn)

+ Dn(ALGO)

b1−1
X

d=0

„

V T

Ḟ
(Φ

n+
da1

b1

) − V T

Ḟ
(Φn)

«

. (28)

We see from (10) and (15),

˛

˛

˛

˛

Dn(ALGO)(V T

Ḟ
(Φ

n+
da1

b1

) − V T

Ḟ
(Φn))

˛

˛

˛

˛

≤ K max
1≤k≤K

˛

˛

˛

˛

(Ḟk(φk

n+
da1

b1

) − Ḟk(φk
n))

˛

˛

˛

˛

≤ K max
1≤k≤K

max
n≤t≤n+

da1

b1

˛

˛

˛F̈k(φk
n)

˛

˛

˛

da1

b1

≤ ǫ max
1≤k≤K

Ḟk(φk(n)), (29)

for any arbitrarily smallǫ and for sufficiently largeφk(n). Inserting
(29) in (28) we see using (14)

b1−1
X

d=0

Dn(ALGO)V T

Ḟ
(Φ

n+
da1

b1

)

≥ b1Dn(ALGO)V T

Ḟ
(Φn) − ǫ max

1≤k≤K
Ḟ (φk

n)

≥
ab1

b
Dn(MWM)V T

Ḟ
(Φn) − ǫ max

1≤k≤K
Ḟk(φk

n) − b1d

≥ a1Dn(MWM)V T

Ḟ
(Φn) − ǫ max

1≤k≤K
Ḟ (φk

n) − b1d. (30)

In a similar way we now derive a lower bound for an approximation
algorithm with approximation parameters(a

b
, d) that is deployed

in mode reconfig with a rational speed-upb1
a1

> b
a
. For this pur-

pose, we note that the relation (29) holds for any schedulingal-
gorithmALGO, in particular it holds forMWMVF . Using (14),
(13), and (29), we obtain:

b1−1
X

d=0

D
n+

da1

b1

(ALGO)V T

Ḟ
(Φ

n+
da1

b1

)

≥
a

b

b1−1
X

d=0

D
n+

da1

b1

(MWM)V T

Ḟ
(Φ

n+
da1

b1

) − b1d

≥
ab1

b
Dn(MWM)V T

Ḟ
(Φ

n+
da1

b1

) − b1d

=
ab1

b
Dn(MWM)V T

Ḟ
(Φn) − b1d

+
ab1

b
Dn(MWM)

„

V T

Ḟ
(Φ

n+
da1

b1

) − V T

Ḟ
(Φn)

«

≥ a1Dn(MWM)V T

Ḟ
(ΦT

n) − b1d − ǫ max
1≤k≤K

Ḟk(φk(n)).

(31)

10.3.2 Proof of stability
Applying the principles of the fluid terminology as in [7] and

dividing both sides of the equations by the number of considered
time slotsa1, we express the equations (28) and (31) in the fluid

ACM SIGCOMM Computer Communication Review 25 Volume 36, Number 3, July 2006

terminology as follows:

〈πVF (t),Φ(t)〉

≤ 〈πALGO(t), Φ(t)〉 + K1 + ǫ max
1≤k≤K

Ḟk(φk(t)), (32)

whereπVF (t) andπALGO(t) are the matchings chosen at timet
by MWMVF andALGO algorithms, respectively,ǫ > 0 can be
chosen arbitrarily small, andK1 = b1d. Now the proof of The-
orem 2 is similar to the proof of Theorem 1 by taking into account
(32):

d

dt
G(t) =

d

dt
〈1, H(Φ(t))〉

= 〈Φ̇(t),ΓVḞ (Φ(t))〉

= 〈I − Ḋ(t)Γ−1, ΓVḞ (Φ(t)))〉

= 〈W, VḞ (Φ(t))〉 − 〈Ḋ(t), VḞ (Φ(t))〉

= 〈W, VḞ (Φ(t))〉

− 〈
X

πALGO∈ΠALGO

πALGOṪ ALGO
π (t), VḞ (Φ(t))〉

≤ 〈W, VḞ (Φ(t))〉 + K1 + ǫ max
1≤k≤K

Ḟk(φ(n))

− 〈
X

πALGO∈ΠALGO

πVF (t)Ṫ ALGO
π (t), VḞ (Φ(t))〉

≤ 〈W, VḞ (Φ(t))〉 + K1 + ǫ max
1≤k≤K

Ḟk(φ(n))

−
X

πALGO∈ΠALGO

Ṫ ALGO
π (t)〈πVF , VḞ (Φ(t))〉

= 〈W, VḞ (Φ(t))〉 − 〈πVF , VḞ (Φ(t))〉

+ K1 + ǫ max
1≤k≤K

Ḟk(φ(n)). (33)

We see from (6) that there exists a constantǫ1 > 0 such that
||W ||IO ≤ 1 − ǫ1. Applying (12), we obtain from (33)

d

dt
G(t)

= 〈VḞ (Φ(t)), W − (1 − ǫ1)π
VF 〉 − ǫ1〈π

VF , VḞ (Φ(t))〉

+ K1 + ǫ max
1≤k≤K

Ḟk(φ(n))

≤ −ǫ1〈π
VF , VḞ (Φ(t))〉 + K1 + ǫ max

1≤k≤K
Ḟk(φ(n)). (34)

The last estimate is derived using a well-known argument based on
Birkhoff’s theorem as in [15]. We note that

Ḟkmax(φ(n)) := max
1≤k≤K

Ḟk(φ(n)) ≤ 〈πVF , VḞ (Φ(t))〉. (35)

Otherwise there would be

〈π∗, Ḟkmax(φ(n))〉 > 〈πVF , VḞ (Φ(t))〉, (36)

whereπ∗ is the schedule defined asπkmax = 1 andπk = 0 for
k 6= kmax. This is impossible as the relation (36) would contradict
the definition of theMWM algorithmMWMVF . Choosingǫ =
ǫ1/2, we see from (34) and (35):

d

dt
G(t) ≤ −

ǫ1
3
〈πVF , VḞ (Φ(t))〉 < 0,

for a sufficiently large||Φ(t)||IO . Now Theorem 2 follows from
(23) and (25) in the same way as Theorem 1.2

10.4 Proof of Theorem 5
We follow an idea in [19] to show that the algorithmMMVG

always calculates the same matching as the following maximum
weight matching algorithmMWMVG : MWMVG is defined as
the MWM algorithm with the functional weights chosen as in
(17). This maximum weight matching algorithm is stable by Corol-
lary 1. The stability ofMMVG then follows from the fact that
MWMVG andMMVG always calculate the same matching. This
is shown using an argument from [19]. In the first iteration, the
MMVG algorithm chooses the queue with the largest functional
weight of allGk(φk(n)), 1 ≤ k ≤ K, sayGa(φa(n)). We recall
from (16) and (17) that at any timen, there isga ([φa(n) + 1]) 6=
gb

`ˆ

φb(n) + 1
˜´

. Thus, theMWMVg,E algorithm, which maxi-
mizes the weight of the whole matching, will also choose the queue
qa with the functional weightGa(φa(n)) for packet transfer be-
cause

K
X

k=1

k 6=a

Gk(φk(n)) =
K

X

k=1

k 6=a

exp(gk

“h

φk(n) + 1
i”

≤

g([φa(n)+1])−1
X

b=1

exp(b)

=
exp ([φa(n) + 1]) − 1

exp(1) − 1

< exp ([φa(n) + 1])

= Ga(φa(n)).

Due to the crossbar structure of the switch, neither theMMVG

nor theMWMVG algorithm chooses any logical queue for packet
transfer that competes for a switch input and output with thecho-
sen logical queue. Thus, these logical queues can be discarded for
the rest of the proof. Applying the same arguments to the sub-
set of the remaining queues, one sees that both algorithms choose
the queue with the largest functional weight among the remaining
queues. The successive application of this argument shows that
both scheduling algorithms are indeed identical.

10.5 Proof of Theorem 6
In order to prove Theorem 6, we apply the techniques used for

the proofs of Theorems 1- 5. We divide the switches in the net-
work into h groupsGh whereh denotes the number of differ-
ent switching policies deployed throughout the considerednetwork
of IQ/CIOQ switches. Accordingly, we divide the departure vec-
tor D(t) and the arrival rate vectorW into h sub-vectors, i.e.,
D(t) = (Di(t))1≤i≤h andW = (Wi)1≤i≤h. In order to prove
stability according to def. 1, we have to show that for1 ≤ i ≤ h,

Di(t)

t
= Wi, w.p.1. (37)

For eachi, the relation (37) can be shown by applying the respec-
tive proofs of the Theorems 1, 2, and 5 to the respective group
of switchesGi, instead of applying them to the whole network of
switches.

ACM SIGCOMM Computer Communication Review 26 Volume 36, Number 3, July 2006

