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ABSTRACT

The delay and throughput characteristics of a packet svdesh
pend mainly on the queueing scheme and the scheduling thiigori
deployed at the switch. Early research on scheduling dlgos
has mainly focused on maximum weight matching scheduling al
gorithms. It is known that maximum weight matching algarith
guarantee the stability of input-queued switches, butrapgactical
due to their high computational complexity. Later reseafobwed
that the less complex maximal matching algorithms can Il&abi
input-queued switches when they are deployed with a sppeaf-u
two. For practical purposes, neither a high computatiooaifex-
ity nor a speed-up of two is desirable.

In this paper, we investigate the application of matchirgpal
rithms that approximate maximum weight matching algorgHm
scheduling problems. We show that while having a low compu-
tational complexity, they guarantee the stability of inpuieued
switches when they are deployed with a moderate speed-up.

In particular, we show that thenprove_matching algorithm
stabilizes input-queued switches when it is deployed wiheed-
upof 2 +e.

In a second step, we further improve on these results by propo
ing a class of maximal weight matching algorithms that ditzdoan
input-queued switch without any speed-up.

Whereas initial research has only focused on scheduling alg
rithms that guarantee the stability of a single switch, neeeork
has shown how scheduling algorithms for single switcheshsan
modified in order to desigdistributedscheduling algorithms that
stabilize networks of input-queued switches. Using theseilts,
we show that the switching algorithms proposed in this palmer
not only stabilize a single switch, but also networks of ingueued
switches.

Categories and Subject Descriptors

C.2 [Computer-Communications Networks]: General —Data
communicationsC.2.1 [Network Architecture and Design]: Packet-
switching networks

General Terms
Modeling of communication networks, performance analysis

Keywords
Scheduling algorithms, stability
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1. INTRODUCTION

The development of fast transmission technologies sucteasé®
Wavelength Division Multiplexing (DWDM) has led to an explo
sive increase in the transmission capacity of network links
order to cope with the increased transmission capacititsyark
switches and routers must be equipped with high-speed lenitc
and forwarding technologies. For this purpose, the chofdhe
scheduling algorithm is a major design criteria of a switshita
determines the throughput and delay characteristics oéwtiteh.
The scheduling algorithm defines a policy that determineihvh
packets are forwarded from the inputs of the switch to theuist
of the switch and which packets are temporarily bufferedhadti-
put side.

As purely output-buffered switches have shown to be imjralct
due to the required high speed-up in the switching core,igngh-
per we only consider input-queued (IQ) or combined inpupot
(CIOQ) queued switches. A typical architecture of a 1Q/CIOQ
switch is given in figure 1. For each inputthere areN virtual
output queued’ 0Q;,;, 1 < j < N. The cells arriving at input
and destined for outpyt are buffered in”OQ); ;. The switching
core itself is modeled as a crossbar which requires that ooe m
than one packet can be sent simultaneously from the samednpu
to the same output. Many switch architectures require thckw
to work at a speed-up ¥, S > 1, which is defined as the ratio
between the potentially higher speed of the switching cackthe
line-speed of the incoming (and outgoing) links.

Switching Fabric

Output 1

Output N

Figure 1: Architecture of an 1Q/CIOQ queued switch

As a first milestone in research on scheduling algorithm&aAc
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own et al. [15] have shown that maximum weight matchirg M)
algorithms stabilize input 1Q/CIOQ switches when they aee d
ployed without speed-up, i.e§ = 1. However, their high com-
putational complexity o(N?) does not allow their practical de-
ployment. As aless complex alternative, maximal matchivigi{)
algorithms have been investigated and it has been showtthiat
can stabilize 1Q/CIOQ switches when they are deployed with a
speed-up ofS = 2. switches. The computational complexity of
a maximal weight matching algorithm @&(N?).

Due to the impracticality of even low speedups at high line
speeds, it is desirable to understand if scheduling alyostexist
that are of low complexity and can stabilize switches at dpges
significantly smaller thatt = 2 or even without a speed-up. The
scope of this paper is to answer this question affirmativedyshow
both, the existence of stable algorithms at speed-ups emntafn
S = 2 and in a second step the existenceldf\/ algorithms that
stabilize 1Q/CIOQ switches without a speed-up, i%®= 1.

In order to establish these results, we proceed as followthe
first step, we define a large classafi¥ M algorithms and show
that they provide stability without speed-up. This invgation ex-
tends the work in [14] and is of independent interest, but sésves
us procedurally to prepare our investigation of low comipjeal-
gorithms with low or no speed-up.

In a second step, we investigate the application of matching
gorithms of low complexity that approximate/ VW M algorithms
as scheduling algorithms for IQ/CIOQ switches. Genenadjzhe
notion of a performance ratio from [11], we say that a matghin
algorithm approximates /W M algorithm with approximation
parameters(c,d), 0 < ¢ < 1, d > 0, if for any values of the
weights of the matching algorithm, the sum of the weight walc
lated by the matching algorithm and of the constdns at least
c times as large as the optimal weight calculated by ¥h&/ M.
The casel = 0 reduces the definition afpproximation parame-
tersto the concept of a performance ratias defined in [11]. The

made. In contrast, this paper proposes the first maximalhweig
matching algorithms that stabilize a 1Q/CIOQ switch withany
speed-up and without assumptions on the occupanoy)s. We
prove the stability of the proposed algorithm by further elep-
ing an idea from [19]: We first define, as described above,gelar
class of maximum weight matching algorithms that guarattiee
stability of a IQ/CIOQ switch. Then we show that a specific max
imum weight matching algorithm out of this class is equinal®
the maximal weight matching algorithm we propose. Thisequi
alence and the stability of the stability of tl& W M algorithm
prove the stability of thé/ M algorithm.

The improvement of our work compared to the ideas proposed
in [19] derives from the specific choice of our weights. We wiefi
weights of the maximal weight matching algorithm such thairey
point in time, no two weights are ever equal. This fact is @ior
showing the equivalence of the maximal matching algorithth e
specific maximum weight matching algorithm without makimy a
assumptions on the occupancy of I&Qs.

The early work on switch algorithms quoted above has investi
gated stable scheduling algorithms for single 1Q/CIOQ chét.
Later work [1],[4] has shown that scheduling algorithmst thazar-
antee the stability of a single switch might lead to insitib8 when
deployed in networks of IQ/CIOQ switches. In [1] and [4], &k
ing policies that require the exchange of information betwte
switches have been proposed. In [2], for the first tindéséributed,
complex maximum weight matching algorithm that does not re-
quire the exchange of information between switches in tivor
has been proposed. We apply the methods developed in [2¢to th
design of the scheduling algorithms proposed in this papense-
quently, the scheduling algorithms proposed here do ngtgumr-
antee the stability of a single switch, but also stabilizevoeks of
1Q/CIOQ switches.

Specifically, we not only show that the proposed algorithtas s
bilize networks of IQ/CIOQ switches when all switches dgpiee

cased > 0 describes the case when the weight of the considered same scheduling algorithm, but we also prove that netwofks o

matching algorithm has to be increaseddin order to achieve a
performance ratie.

We prove general results for matching algorithms that appro
imate aM W M algorithm with approximation parametefs, d).

IQ/CIOQ switches where each switch deploys any of the sdhedu
ing policies proposed in this paper are stable.

In conclusion, to the best knowledge of the author, this & th
first time that stability for a network of 1Q/CIOQ switchesutd

We discuss two modes to deploy these algorithms in a IQ/CIOQ be shown for a nod W M algorithm with a speed-up strictly be-

switch. We show that in both modes, a deployment of the switch
with a rational speed-uf > % is sufficient to guarantee the stabil-
ity of a 1Q/CIOQ switch.

As a first application of these general results, we investitaur
known types of maximal matching algorithms that have a cdaxpu
tional complexity ofO(N?). We derive a previously known result
that their deployment with a rational speed-fip> 2 guarantees
the stability of a IQ/CIOQ switch. Compared to previous w8k
[8], [6] that relied on a detailed analysis of the specifid\/ algo-
rithm under consideration, our analysis of approximatidiy M
algorithms provides a unified framework to show the stabibit
the four considered types @f M algorithms.

As a second application, we discuss theprove_matching al-
gorithm from [11] that approximates/@ W M algorithm with ap-
proximation parameter(s§ — ¢,0) and has a computational com-
plexity of O(N?). Applying our general results on approxima-
tion algorithms, we show that this algorithm stabilizes 23@Q
switch when it is deployed with a rational speed-ugbof 2 + e.

In the third step, we propose a classMdfM algorithms that sta-
bilize input 1Q/CIOQ switches with a speed-up = 1. In [19],
it has been shown that under the assumption that nolté) s

low S = 2. In particular, the class o/ M algorithms proposed in
this paper satisfiethe most common performance requirements on
a scheduling algorithmit guarantees the stability of a network of
switches, it can be implemented in a distributed mannerdbas
not require the exchange of information between the swatcihés

of feasible computational complexity, and it does not regjainy
speed-up.

In sec. 3 -5, we first describe the proposed scheduling jpslici
in a non-distributed, centralized way, i.e., we will assuimet the
configurations of all switches are computed by a centraliszder,
which sends each switch its specific configuration. In seaver,
will then show how the algorithms presented in this paperatan
be implemented in a distributed fashion, such that in eaxh $lot,
each switch calculates its own configuration. The stabibgults
proved in this paper hold for both a centralized and a disteit
implementation.

In the next section, we introduce a mathematical model ota ne
work of switches. In sec. 3, we propose scheduling algosthm
based on generalizetd W M algorithms and provide stability re-
sults for these algorithms. Stable scheduling algorithased on
approximation algorithms are investigated in sec. 4. In Seeve

ever have the same occupancy, such a maximal weight matchingpresent a class of maximal weight matching algorithms that-g

algorithm exists. In practice, this assumption can obvionst be
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antees the stability of a network of 1Q/CIOQ switches wheis it
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deployed with a speed-uf = 1. The stability of networks that
deploy a combination of different types of scheduling alipons
at different switches is discussed in sec. 6. In sec. 7 weaexpl
how the algorithms proposed in this paper can be implementad
distributed manner throughout a network of switches. Wekate
in sec. 8.

We assume that the external arrival processes are statianar

satisfy the Strong Law of Large Numbers. Thus,

> A
lim =2 =A
n—oo n

w.p.1, 4)

We mention that parts of the work presented in Section 4 have whereE[A,] = A = (\',..,A\%) ,vn > 1%

been described in a more condensed form in [5].

2. TERMINOLOGY AND MODEL

2.1 Model of a network of queues

In this section, we follow an approach in [2] to describe a eiod
of a queueing system. We assume a systeni physical queues
¢, 1 < j < J of infinite capacity. Each physical queue consists of
one or more logical queues, where each logical queue camédsp
to a certain class of customers within the physical queueeh
ever a packet moves from one physical queue to another,rigeisa
class and therefore also changes logical queue. We deragéecall
queue byy®, 1 < k < K, whereK > J. A packet enters the net-
work via an edge switch, travels through a number of switetmes
leaves the network via another edge switch. We define a famcti
L(k) = j that defines the physical quedgé at which packets be-
longing to the logical queug” are buffered. We defing ~'(5) as
the counter-image through functidr{k), i.e., it returns the logical
queues;” that belong to the physical quegé.

Throughout this paper, the timés described via a discrete, slot-

n

We now calculate the average workload of the logical queues
¢" which we denote byV = (w?, ..., w™). The expected traffic
arriving from outside the system is by definition equaltoThe
traffic that arrives at the logical queues after having pagseugh
m previous queues inside the network is by the definition of the
routing matrix R equal toAR™. Noting that(I — R)™! = T +
R + R? + ..., we find that the overall average workload at the
logical queueg” is given byW = A(I — R)~".

Finally, we give a stability criteria for a network of queuas
proposed in [2].

DEFINITION 1. A system of queues is rate stable if

n—1

1
li — E;i—D;)=0
7L—H~I>100 n ;O( )

Xn

lim =
n—oo N

w.p.1

Throughout this paper, whenever we talk abostablesystem, we
refer to the notion ofate stabilityas given in definition 1.

A necessary condition for the rate stability of a system afleps
is that the average number of packets that arrive at any gdlysi

ted time model. Packets are supposed to be of fixed size and anqueuej’ during a time slot is less than 1. In order to formalize this

externaltime slot is the amount of time needed by a packet to ar-
rive completely at an input link. For a speed-8ip> 1, we define
aninternal time slot as the amount of time needed for a packet to
traverse the switching core.

We define a row vectoX,, = (x5, ...7sz), where thek-th
vector z* represents the number of packets buffered in the logi-
cal queueg” at the beginning of the-th external time slot. We
defineE, = (e}, ...,eX), wheree® equals the number of arrivals
at the logical queug” in then-th external time slot. Analogously,
we defineD,, = (d},...,d%), 0 < d% < S, whered® expresses
the number of departed packets frgfin the n-th external time
slot. Thus, we can describe the dynamics of the system asvill

Xni1 = Xpn + En — Dy (1)

Packets that arrive at a logical quegfeeither arrive from outside
the system or are forwarded from a queue within the systems,Th
we can write:

En - An + Tru (2)

where A, = (ap,...,al) denotes the arrivals from outside the
system andly, = (th, ..., t,’f) denotes the arrivals from inside the
system.

We further define a routing matrik = [r;;], 1 < i,j < K,
wherer; ; is the fraction of customers that depart from the logical
queueq’ and are destined for the logical quegie Assuming a
deterministic routing policy, there holds, ; € {0, 1},

z Ti,5, Z Ti,j Sl.

1<i<K 1<<K

max

We setr; ; = 1, if ¢’ follows ¢ along the route. Noting that
T, = D, R and writing for the identity diagonal matrix, we find
from (1) and (2):

Xnt1=Xpn + An — Do(I - R). A3)
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criteria, we introduce the following norm for a vectgre R¥ :

DEFINITION 2. ForavectorZ € R¥ | Z = (2!, ..,25), and
the functionZ ~* (k) as defined in this subsection, we set:

> A

keL=1(j)

||Z||77L(L(L'L = max
J=1,..,.

If we apply this norm to the average workload vecidt then
the expressioffW||ma=r denotes the maximum average workload
over all physical queue® . The necessary condition for rate stabil-
ity can now be formalized as follows:

W lmaer < 1. ©)

2.2 Model of a network of switches

In this section, we apply the terminology of the previous-sec
tion to a network of 1Q/CIOQ switches. A network of 1Q/CIOQ
switches can be conceived as a queueing system as defineal in th
previous section where the virtual output queues corraspothe
physical queues. In this model we neglect the output queliibe o
switches because instability can only occur atitieQ@s (see [2]).

We say that packets that enter the network via the input ofengi
switch and leave the network via the output of a given switeh b
long to the same flow. Packets belonging to the same flow travel
through the same sequence of physical queues and are mapped t
the same logical queues at each physical queue, i.e., a flolveca
mapped bi-univocally to a series of logical queues.

We assume that each logical queue behaves as a FIFO queue
and assume @er-flow scheduling scheme, which is more com-
plex than aper-virtual output queuescheduling scheme. In sec.

3 - 7 we prove the main results of this paper per-flowschedul-
ing schemes. In [2], it has been shown hper flow scheduling

Throughout the paper, we abbreviate "with probability 1” by
"w.p.1”.
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schemes can be used to desigm-virtual output queuscheduling
schemes.

The network consists @B switches and each switch hag, 1 <
b < B, inputs and outputs. If the total number of flows in the
system isT’, we do not have more thalN? physical queues and
TN? logical queues at switch. We can model the whole net-
work of switches as a system ofS_ T NZ logical queues. For

1<b<B

the sake of simplicity, we suppose thst = N, Vb, 1 < b < B
and setk' = T'N”B. Finally, we defineQ;(b,1) as the set of in-
dexes corresponding to the logical queues atittfeinput of the
b-switch. Analogously@Qo (b, ) denotes the set of indexes corre-
sponding to the logical queues directed to ik output of theb-
switch. We further note that logical queues are defined péclsyw
per virtual-output queue, and per flow. Thus, the indeaf any
logical queue in the network can be uniquely expressed as
TN?b+TNi+Tj+1,0<b<B,0<i,j<NO0O<I<T.
We use these definitions to adapt the NnQf#1| ..z to a network
of switches that handle multiple flows at their inputs.

DEFINITION 3. GivenavectoZ € RX, Z = 2 k = TN?b+
TNi+Tj+1,0<b< B,0<14,j<N,0<1[<T thenorm
[|Z]|10 is defined as follows:

> 1L

meQr (b,i)

1Z]lr0 = max_ |2

>

i=1,..,N meQo(b,i)

Throughout this paper we assume a deterministic routingpiat
defined by the routing matri® and we call a traffic and routing
pattern that satisfies the necessary rate condition foilisyads de-
fined in (5)admissible Using definition 3, we can now rewrite the
condition (5) for a network of switches as follows:

DEFINITION 4. For a network of IQ/CIOQ switches, a traffic
and routing patterri¥” is admissible if and only if:

IWllro = [IAUI = R)'[| < L. (6)

Without further mentioning, in the rest of this paper, welwilly
consider traffic and routing patterns that satisfy the cioonli(6).

3. MAXIMUM WEIGHT MATCHING
POLICIES

3.1 Weight function

The scheduling policies introduced in this paper are based o
matching algorithms. Any matching algorithm is defined tieta
to a specific weight. For the definition of the weights, we witike
use of a family of real positive function (z) : N - R, 1 <k <
K, that satisfy the following property:
fim ) L )

n—oo n wk

We defined" (n) = Y dF, as the cumulative number of services

m<n
at queueg® up to timen. Here, we assume that all switches start
service at the same time = 0 and all switches continuously work
until time n. We define the weight of the queyé at timen as

¢ = n—fi(d () +e ®)

wherec is a given constant, and we set, = (¢L, .., ¢%X). This
choice of the weights is motivated by the fact that it willoa¥ us
to derive the relation (23) in the appendix, which in turnsed for
the proof of the rate stability in Theorems 1 and 2. The corsta
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is chosen as follows: We see from (7) that there exists a anhst
such that
&y o dn

fk(dn) 2 W —C. (9)
As the cumulative departure rate is less than the cumulativeal
rate, there hold$im, .., dX < w”n. Both estimates imply that
for ac chosen as in (9) the weight: is always positive. This fact
is used in the proofs of Theorems 1 and 2 in the appendix. For
further usage, we note that the relations (7) and (8) impdy tor
any given positive integer, there is

k k
¢n - ¢n+v

wherecz (v) is a positive constant depending on

In [2], an example forfy(n) is given. The cumulative function
of external arrivals for the logical queug is given bya”*(n) =
S aF,. The inverse functiorf@®]~*(p) maps the packet num-

m<n

ber p to the time slot in which the packet arrived externally to
the network. Setting’.(p) = [@"]~"(p), the weight¢? = n —
[@*]7 (p) + c denotes the age of theth packet at times,i.e., the
amount of time the packet has spent in the network, plus the co
stant ¢c. At its departure time from the netwotk the age of the

p-th packet isy — [@*] 1 (dy).

< e (’U), (10)

3.2 Definition of maximum weight matching
algorithms

In this section, we define a class of maximum weight match-
ing policies that guarantee the stability of a network ofC@Q
switches. This class of policies is an extension of the peside-
fined in [14]. This extension is not only of interest in itsddfit is
necessary to prove the stability of a classiéf\/ algorithms de-
ployed without speed-up as specified in Theorem 5 below.

We define a set of functior :

DEFINITION 5. Areal functionF' : R — R is said to belong to
the se(G if
a) F is monotonically non-decreasind;(0) = 0, F(z) > 0 if
x> 0.
b) F'(z) exists for allz > 0.
C) F(z) — oo forz — oo.

For a fixed set of functions8i, .., Fx € G, we define the functional
weights

Fiu(¢8), 1<k <K. (11)

Furthermore, we define the following vector function via thec-
tions F1, .., Fix and their derivatives:

(Fi(6h). o Frc(6).

We write the scalar product for two vectarsandvs as{vi,vs) =
vivs . We define a schedule = (!, ..., %) of a switch as the
chosen configuration of the switch corexlf = 1 then the logical
queueg” is connected to its output. In contrastif = 0, then the
logical queue;” is not connected to its output.

We define a scheduling algorithid W M VF as follows: At each
time ¢, the scheduling algorithm/W M"* chooses the schedule
7#VF which is defined by the following equation:

" (n) = arg max(m, Vi (¢(n))),

Ve(®(n) =

(12)

where the maximization is taken over all possible schedtl@his
maximization problem is solved using the Hungarian methadl a
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has a complexity 0O (K ). We write the weight of the matching
chosen by a//W M"* algorithm as defined in (12) as

Dy (MW MYF) (Vi ()" max D (Vi (6())) " (13)

We formulate the main result of this section:

THEOREM 1. For any set of functiong, .., Fx € G, a net-
work of IQ/CIOQ switches that implements\aiW M V¥ schedul-
ing policy is stable under admissible traffic.

Proof: The proof is given in the appendix.
For further usage, we state the following corollary:
Corollary 1: If in (8) the weights are defined 4g; + 1] instead
of ¢, where[z] denotes the biggest integer smaller than or equal
to z, then Theorem 1 still holds.
Proof: The proof is nearly identical to the proof of Theorem 1.

4. APPROXIMATIONS TO THE
MWM - ALGORITHM

In this section, we introduce local scheduling policiest tuae
based on algorithms that approximat&il’ M algorithms.

4.1 Definition of an approximation
MWM algorithm

We formally define an approximatiah/1¥ M algorithm as fol-
lows.

DEFINITION 6. For a scheduling algorithmALGO that ap-
proximates aM/ W M " algorithm - as defined in (12) - with ap-
proximation parameter:ﬁ%, d) ,a,b € N, a andb prime to each
other, there holds

Dn(ALGO)(Vi(¢(t))"

a

=D (MWM"")(Vp(4(1)" — d, (14)

whereD,,(ALGO) denotes the matching chosen by the algorithm
ALGO.

4.2 The deployment of approximation
algorithms in a switching core

We consider approximation algorithms that approximate a
MWM algorithm with approximation paramete($, d) . Without
further mentioning it, we always assume that b, wherea andb
are prime to each other. To compensate for the fa&tore propose
to deploy all approximation algorithms with a rational sppeg of
S = bl > b . We propose two different modes to implement an
apprOX|mat|0n algorithm in a 1Q/CIOQ switch.

We extend the notation introduced in sec. 2 as follows: We de-
fine XHdbﬂ, 0 < d < by — 1, as the vector the entries of which

1

are the number of packets buffered in the logical queuesTt ti

n + 4. For everyn satisfyingn = (0moday), time n + 4

denotes the beginning of tl{€ + 1) -th internal time slot after 'the

then-th external time sIotDHm expresses the number of pack-
b1

ets departing in thé&d + 1)-th internal time slot of the:-th external
time slot, andF 14 a1 is defined analogously.
T

In thEmode_keep], the scheduling algorithm computes a match-
ing at the beginning of a time slet = (0moda1). It keeps the
matching constant until the beginning of the time slgt a1, when
a new matching is calculated. In the interj@) n + a1), up tob,
cells are forwarded at equally spaced time intervals ofther%g.
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For themode_keep, the evolution of the queue lengths is described
as follows:

X Xn — dDn(ALGO)

7L+dl;%
+ > Eniet+Ds, 1<d< by,

0<e< d‘“

whereDs = max (Q, dD, — X5 — Y. EHC). Here,0 is
O§c<%

the vector withK elements with all entries equal to zero and the

maximum is taken for each vector entry separatelyl*lf= 1, the

entry d¥ denotes the difference between the number of cells that

have been forwarded in the interjal, n + d,%), and the number

of internal time slotsl in the interval. Ifd® = 0, thend® = 0.

In the mode_recon fig, a new matching is computed in every
internal time slot, i.e., ever)%L external time slots, and cells are
forwarded accorded to a calculated matching at most onc& Th
gueue evolution for thewode_recon fig is described as follows:

d—1

Xurggr = Xn=2 Doy (ALGO)
+ D Eniet+Gs, 1<d< b,
0<c< da1

whereGj is a vector withK elements where each entry is an in-
teger betweei and b, . If at time n, there holdsz® > b, then
there isg¥ = 0. If at time n, there holdsz® < by, then de-
pending on thd”OQ lengthz* at timen and the arrival patterns
ek ., 0 < ¢ <d—1,inthe interval[n,n + d‘”) the switch

might not always be able to forward a packet frwﬁ)Qi’j even if
the scheduling algorithm prescribes so becaifs+eda] =1.The
n ?

valueg’ equals the number of instances where this happens for the
VOQ*" and thus takes valuesn the range) < ¢ < b;.

The mode_keep mode requires less computations than the
mode_recon fig mode. However, therode_recon fig reacts faster
to the changing lengths of tHEOQ. Applying the analysis from
[16], one can show that th@ode_keep mode leads to larger aver-
age package delays at th&> Qs than themode_recon fig mode.

In order to state the main result of this paper, we define aghe s
of functionsG* as a subset of the sgtdefined in section 3.2:

DEFINITION 7. A real function F R — R belongs to the set
G if
aFed.
b) F' exists and for any fixed positive constant

F
lim ax - (2)
T—00 t€[z—c,x+c] F(IE)

—0. (15)

Now, we state the main result of this paper:

THEOREM 2. We consider a network of IQ/CIOQ switches that
implements an approximatioh/ W MY algorithm with approxi-
mation parameterg<, d), with functional weights7, (4% ) as de-
fined in (11), and where the functiofig € G*. Assuming admissi-
ble traffic, the network is stable when tA¢W M V7 algorithm is
deployed in eithernode_keep or mode_recon fig with a rational
speed-up of = 2 > 2

Proof: The proof is given in the appendix.
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4.3 Examples of approximation algorithms

4.3.1 Maximal matching algorithms

The most common approximation algorithms té/dV M algo-
rithm are variations of maximal matching algorithms. A nmal
matching is a matching that is not properly contained in ahgio
matching of the graph.

The greedy maximal matching algorithm works similar to a-gen
eral maximal matching as explained in [12]. It differs frongen-
eral maximal matching algorithm by not choosing an arbjtesfge
at each step, but picking the heaviest edge currently dlaiia-
stead. It has approximation paramet(agso). A specific imple-
mentation for switches that deploypar — VOQ queueing and
scheduling discipline is proposed in [3]. We generalizs triple-
mentation to @er — flow queueing discipline as considered in this
paper as follows:

DEFINITION 8. For a given input; and a given outpuj at a
given switchb, we define the set of all logical queues that either
belong to the input or that are directed to the outpyt We set
Vb,i,5,1<b< B,1<4i,j <N,

Spij = {m c1<m <K, meQr(b,i) UQo(b,j)}-

For a set of positive weight®”, 1 < k < K, whereP* is the
weight assigned to the logical quey®, we now formally define a
maximal weight matching algorithm as follows:

1. Initially, all logical queues;”, 1 < k < K, are considered
potential choices for a cell transfer.

2. The logical queue with the largest weight, g4, is chosen
for a cell transfer and ties are broken randomly. We assume
without loss of generality thaty € Q1(bi,i1) and ko €
Qo(b1, j1).

3. Alllogical queueg” with k € S, 4, ;, are removed.

4. If all ¢ are removed, the algorithm terminates. Else go to
step2.

Preis [17] presented another linear time approximatiooréitymn
fora MW M algorithm with approximation paramete(r§, 0). The
main idea is to replace the heaviest edge needed by the gatedy
gorithm with a locally heaviest edge.

A different approach is used by Drake and Hougardy in [9]. The
main idea of the proposed algorithm is to grow in a greedy way
two matchings independently and to return the heavier df beta
result. Again, this algorithm has approximation paranaa(tgro).

In [10], the same authors propose local improvements to engiv
matching as a postprocessing step to enhance the perfagnoénc
the approximation algorithm for th&/ VW M problem in practice.
The postprocessing does not improve the approximatiompara
ters(3,0).

Using the fact that all algorithms discussed in this sectipn
proximate theM W M algorithm with approximation parameters
(3.0) , we deduce from Theorem 2:

THEOREM 3. For admissible traffic, the maximal matching al-
gorithms described in this section stabilize a network ofdIQQ
switches when they are deployed in eitherode_keep or
mode_recon fig with a rational speed-us > 2 and the func-
tional weights are chosen as in (11).

Algorithm improve_matching

(G=(V,E),w: E—R" M)

1 makeM maximal

2 M =M

3 for e € M do begin

4 if there exists g-augmentation inV/” with
with centere

5 then augment)M’ by a good3-augmentation
with centere

6 end

7 return M’

Figure 2: The improve_matching algorithm

4.3.2 Themprove.matching algorithm

We give a short overview of the main structure of the alganith
and refer the reader for the missing details to [11]. We asstinait
the reader is familiar with standard graph theoretic tealaigy as
used in [11].

The idea of theimprove_matching algorithm is first to use
standard techniques to expand a given matching to a maxiatahm
ing (if the given matching is not already maximal) and themtke
local improvements via appropriate augmentations to thenreal
matching. In particular, thenprove_matching algorithm consid-
ers only local improvements that are obtainedshart augmenta-
tions. A short augmentations defined as an augmentation such
that all the edges in the augmenting set are adjacent to #ispec
edge of the graph.

Furthermore, the algorithm does not considershtbrt augmen-
tations but only considerg-augmentations which are defined as
those short augmentations that lead to a local gain of arffattat
leasts, whereg is a fixed constant 1. In a particular instant, there
might be more than one possihleaugmentation. Intuitively, it is
desirable to choose th@-augmentation that produces the biggest
gain. However, for the purpose of thewprove_matching al-
gorithm, it is sufficient to choose good -augmentation.A -
augmentation is callegood if it achieves at least3 —1)/(8 — 1)
fraction of the gain that the best logadapproximation can achieve.

We now formally define thémprove_matching algorithm in
figure 2. First, the input matching/ is made maximal (if neces-
sary) and then no further changes are madéftoinstead,M is
copied toM’ and all local augmentations are done with respect to
M’. The algorithm visits each edge € M only once, and if it
finds anys-augmentation set at this edgefif, it performs a good
(B-augmentation centered atin M’. In [11], it is shown that the
the complexity of theémprove_matching is linear in the number
of edgesE, i.e.,O(K?).

In order to achieve approximation parametén%— e,O) the
improve_matching algorithm is applied iteratively. We first use
a maximal matching algorithm (see sec. 4.3.1) to calculates
imal matchingMo with a weightw(Mo) > 1w(Mop:), Where
M,,: denotes a maximum weight matching of the gragh=
(V, E). We then apply theémprove_matching algorithm to the
matching M, to obtain a matching//; and then iteratively apply
the algorithm to the matching/; to obtain a matchind/; 1. Itis

Thus, among others, we provide a new way to prove that greedy shown in [11] that at mosD (%) iterations are required to achieve

maximal weight matching algorithms are stable with a raiepeed-
up of S > 2 as shown in [3]. The maximal matching algorithms de-
scribed in this section have a complexity of at Mot log K).
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approximation paramete(s — ¢, 0) . Thus, we deduce from The-
orem 2:

Volume 36, Number 3, July 2006



THEOREM 4. The iteratedimprove_matching algorithm de-
fined with functional weights as in (11) stabilizes a netwofk
1Q/CIOQ switches under any admissible traffic when it is dged
with a rational speed-upl > % + € in both modesnode_keep and
mode_reconfig.

5. MAXIMAL WEIGHT MATCHING
ALGORITHMS WITHOUT SPEED-UP

5.1 A stable maximal weight matching algo-
rithm

In this section we define a class of maximal weight matching
algorithms M MV¢ that guarantee the stability of a network of

switches when they are deployed without a speed-up. A maxi-

mal weight matching algorithm with general weights has haeen
scribed in sec. 4.3.1. Thus, in this section we only have fmele
the specific weights of the class of algorithfs)/ Ve .

We consider a set of functiong, 1 < 7 < K that belong to the
setG defined in sec. 3.2. We also require that fo j and for
any pair of two not necessarily different integerandb € N, there
holds

gi(a) # g;(b). (16)
We define the functional weight of the quegfeas
Gi (') = ean(9([o"m+1])),  @n

whereexp(z) is the exponential function. We note that the func-
tions Gy, in (17) correspond to the functiorf§, in (11). Thus, the
functionsFy (x) € G introduced in sec. 3.2 correspond to the func-

tions [ G (t)dt.
0

We now give an example for a set of functiaps A square-free

number is defined as a natural number that cannot be divided by

the square of any other natural number. We denote;by s» <

. < sk as the firstK square-free numbers in increasing order.
For a fixed even natural numbet, we then define the function
gx(x) asgr(z) = sxx™. The definition of the weights ensures that
(16) always holds. This is true because for any two diffetegi-
cal queues: andl, i.e., k # [, there exist a prime numbersuch
that the largest power of that dividessy, ([¢*(n) + 1])™ is odd,
whereas the largest powerpthat dividess; ([¢' (n)+1])" is either
even or equal to zero. In a specific implementation, the nusnhe
could be chosen as the firkt prime numbers.

We now state the main result of this section:

THEOREM 5. A network of IQ/CIOQ switches that implements
a M MV< . scheduling policy with a speed-u= 1 and the func-
tional weights as defined as in (17) stabilizes a network 6€1QQ
switches under admissible traffic

Proof: The proof is given in the appendix.

6. NETWORKS OF IQ/CIOQ SWITCHES
WITH DIFFERENT SCHEDULING
POLICIES

In sec. 3 -5, we considered networks of 1Q/CIOQ switches
where all switches deploy the same scheduling algorithm.aAs
further extension, we show that a network of switches, wieewh
switch in the network deploys any of the switching policies d
scribed in sec. 3 - 5, is stable as well:
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THEOREM 6. A network of IQ/CIOQ switches where each switch
deploys any of the scheduling algorithms defined in Theolents
is stable under admissible traffic.

Proof: The proof is given in the appendix.

7. DISTRIBUTED IMPLEMENTATION OF
THE ALGORITHM

The scheduling algorithms as defined in sec. 3, 4, and 5 for-
mulate the scheduling problem as an optimization probleat th
takes into account all logical queues of the network. Thiosse
formulations assume the existence of a centralized scingdal-
gorithm that always knows the state of the whole network.sThi
seems to contradict the purpose of the paper to investigate d
tributed scheduling policies, in which each switch only siders
the logical queues at its owliO@s. In this section, we describe
how the centralized scheduling policies proposed in se& &n
be implemented in a distributed manner.

We first considetM W M scheduling policies. The maximiza-
tion in (12) is subject only to the crossbar constraint: lohetime
slot, at each switch at most one cell can be sent from each one
input and at most one cell can be sent to each output. However,
a switch configuration at a specific switch does not constizn
choice of the switch configuration at another switch. Thussplit
the weight vecto into B weight sub-vector® = (&4, .., ®5),
where the sub-weight vectdr, contains the logical queues at the
b-th switch. Accordingly, we split the vectdrr in B sub-vectors
Ve = (Vr1, .., Vr,B). Thus, the maximization in (12) can be writ-
ten as:

™ () = arg max(r, Vir(¢(n)))

B

= Z arg max(my, Vi (Pp(n))),
b=0 b

wherem, is the schedule chosen at th¢h switch. The maximiza-
tion problemmax { (ms, V= , (¢s(n))) } can be solved solely at the
T ’

b-th switch.

With regard toMW M approximation algorithms the same ar-
gument applies. Again, the approximation algorithm is exed
separately at each switch in the network as the crossbatraoris
Finally, the same argument shows how the class of maximalhmat
ing algorithmsM M V< can be implemented in a distributed man-
ner.

8. CONCLUSIONS

This paper examinedistributed scheduling algorithms of low
complexity that stabilize networks of 1Q/CIOQ switches wibw
or no speed-up and that do not require any coordination legtwe
the switches in the network.

First, we consider a generalized class\6#V M algorithms that
stabilize networks of IQ/CIOQ switches. Then, we investgae
application of approximatiod/W M algorithms scheduling algo-
rithms for networks of 1Q/CIOQ switches. We show thdtil M
approximation algorithms guarantee the stability of neksoof
IQ/CIOQ switches under specific speed-up requirements.lyApp
ing these results, we show that theproved_matching algorithm
guarantees the stability of a network of IQ/CIOQ switchegmi
is deployed with a rational speed-1$p> % + €.

Second, we propose a maximal matching algorithm that stisfi
the most common performance requirements on a scheduging al
rithm: It guarantees the stability of a network of switchiggan
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be implemented in distributed manner that does not requaex-
change of information between the switches, it is of feasdgm-
putational complexity, and it does not require any speed-up

Finally, we prove that networks of IQ/CIOQ switches wheretea
switch deploys any of the scheduling algorithms presentatis
paper are stable.
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10. APPENDIX
10.1 The fluid methodology

For the proofs of the Theorems 1, 2, and 5, we use the fluid
methodology and its extension given in [2] and [7]. Applyithg
definitions introduced in sec. 2, we define the three follgréon-
tinuous vector functions:

e X(t) = (Xi(t),..., Xk (t)) denotes the number of packets
in the logical queues at time

e D = (Di(t),..., Dk(t)) denotes the number of packet de-
partures from the logical queues until time

e A = (Ai(t),..., Ak (t)) denotes the number of packets ar-
rivals at the logical queues until time

We consider a specific scheduling algorittiand we definél» =
{n”} as the set of all possible network-wide matchings chosen by
F.Foralln” ¢ I1#, we denote byl’Y (t) the cumulative amount

of time that the matching” has been applied until timeby the
algorithm F. Obviously, 77 (0) = 0 Vx7 € IIx. Using (3), we
obtain the fluid equations of the network of IQ/CIOQ switclass
follows:

[17]

[18]

[19]

X(t) = X(0)+At—D@)(I—-R), (18)
D)y = Y T, (19)
N 17 = ¢ (20)

nF ellg

The first equation models the evolution of the logical queues
whereas the second equation counts the total number oftdegmr
from the VOQ@s. The third equation reflects the fact that in each
time slot each input is connected to some output. Takingé¢hieat
tives, we derive from (19) and (20):

D(t) >, TIE®),

nFellx
> T

Fellr

(1)

= L (22)

Applying the fluid methodology further, we define a continsiou
version of the weight®,, - defined in(8) - as®(t).

10.2 Proof of Theorem 1

First, we state an algebraic relation which we will use far th
subsequent proof. We note that by gljn fx(t) — t/w". Thus,

by (8) andd" (t) — oo for t — oo, we obtain

o5(t) =t — — (23)
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from which we obtain by taking the derivative on both sides:
d(t)=T1- D), (24)

[v(#9)] as the diagonal matrix with*:¥) =
=TVr(z), z €

where we defind' =
w, and let" ~! be the inverse df. Then, we seff ()
R and define the Lyapunov function:

G(t) = (L, H(®(1))),

We want to show thatt > 0,

[|[®(t)]]10 < B, (25)
for a certain constanB > 0. We see that if
d
— <
dtG(t) <0 (26)
V¢t such that ||®(t)[zo0 > C, then there holds
G(t) < G(s), which by c) in definition 5 implies

max
T s, IG(9)llroLC
(25) for a certainB > 0. Thus, we will show (26) in order to prove
(25). Now (26) follows from (24), (21), and (22):

d

%G(t)
= <7 (©(1)))
= (<I>(t), Ve (2(1)))
= (I- DM, TVH(2(1))))
= (W, Vi (2(1)) — (D(1), Vi (2(1)))
= (W, Vp(2(1))) —( Z m T (1), Vi (R(2)))
= (W, Vp(2(1)) — Z T () (w7 (8), Vi (2(2)))

(W, Vie(@(1))) — (x'7 (1), Vi (@ (1))

0.

IN

The last inequality follows from (12) and by an argument iB][1
We see from (23) and (25):

0<t d (,f)—kc < B.
=k
This implies lim 2 = w* i.e.,
t—o00
tlim @ = W, w.p.1, (27)

which corresponds to the rate stability condition’dft) according
to definition 1.0

10.3 Proof of Theorem 2

10.3.1 Lower bounds for the weights calculated by
approximation algorithms

In this section, we define lower bounds for the weight cateda
by an approximation algorithm deployed with a rational shep
Z—l > g in eithermode_keep or mode_recon fig. We will need
these lower bounds for the proof of Theorem 2 in sec. 10.302. F
our investigations, we consider the weight of all matchiogsu-
lated ina; successive time slots, n+a1) by an approximation al-

gorithm with approximation parametef$, d) in mode_keep. We
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find
by —1
> Du(ALGO)VE (@
d=0
b1 D, (ALGO)VE (@)

n+%)

by —1
+ Dn(ALGO) (vgf (P, d01) = Vi (@ )) (28)
d=0 b1

We see from (10) and (15),

DLALGO)VE(®, , g0s) = VE (@)

< K max (Fk(¢ dal)_Fk(¢’lr€z))’
<k< nt+3
da1
< K max max | EFy(¢n)
1<k<K n<t<n+- dal b1
< Glﬁixkaw (n)), (29)

for any arbitrarily smalt and for sufficiently large* (n). Inserting
(29) in (28) we see using (14)

by —1

> Du(ALGO)WE (@, a0)

by
d=0
T _ 2(BF

> b D (ALGO)VE (®r) € max_ F(¢k)

abi T
> = Dn(MW M)V (®n) — € max Er(¢r) — bid
> a1 Dn(MWM)VE(®,) — € max_ F(¢%) — bid. (30)

<k<

In a similar way we now derive a lower bound for an approxiorati
algorithm with approximation parametef$, d) that is deployed
in mode_recon fig with a rational speed- ué— > b . For this pur-
pose, we note that the relation (29) holds for any scheduding
gorithm ALGO, in particular it holds forM W M"* . Using (14),
(13), and (29), we obtain:

by —1

>.D,., dal(ALGO)VT( oy dos)
by

d=0
bl 1
> 5 ZD oy (MW M)V} (q>n+%)—b1d
d=0
ab1
> Dp(MWM)VE(® sy ) — brd
b nt g
abl T
= = Da(MWM)VE (n) — bid
0. awan) (VE@, , g) - VE (@)
b1
T T - k
> a1 D (MWM)Vy (®,,) — bid — € max Fy(¢"(n)).

(CHY)

10.3.2 Proof of stability

Applying the principles of the fluid terminology as in [7] and
dividing both sides of the equations by the number of comsitie
time slotsa;, we express the equations (28) and (31) in the fluid
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terminology as follows:

(V7 (t), B(t))
< <71—ALGO(t),<I)(t)> _|_K1 +€1I<I}€84<XKFk(¢k(t))’ (32)

wherer "7 (t) and are the matchings chosen at timhe
by MW MYF and ALGO algorithms, respectively, > 0 can be
chosen arbitrarily small, anfl; = b1d. Now the proof of The-
orem 2 is similar to the proof of Theorem 1 by taking into agttou
(32):

d d

L H@W)

ALGO (t)

(1), TV (2(1)))
(I DO, TV(@(1))))

= (W V(®(1) — (D(1), Ve (®(1)))

SR UAACION
( TALGOFALEO (1) v (3 (1)))

mALGOEel oGO

(W Ve(@(1) + K +¢ max Fi(o(n)

- T ()T (8), Vi (8(1)))

(W.Va(®(1)) + K: + € max Fi(é(n))

>

(W, Vie(@(1))) — (a7, Vi (@ (1))
Ki+e  nax Fi.(o(n)).

IN

IA

T ()/(r'7, Vi (@(1)))

+ (33)

We see from (6) that there exists a constant> 0 such that
[IW|lro <1 — e1. Applying (12), we obtain from (33)

d

Z2¢®

(Vi (@), W — (1 —e)n'") — er(n"", Vi (D(1)))
Kyt e max Fi(¢(n))

IA

— (w7 Vp (@(0) + K + € max B (6(n). (34

The last estimate is derived using a well-known argumergdas
Birkhoff’s theorem as in [15]. We note that

Frpan (1)) = X Fi(g(n)) < (w7, Vi(®(t))).  (35)
Otherwise there would be
(1%, Py (6(n))) > (77, Vi (R(1))), (36)

wherer* is the schedule defined a$™e* = 1 andn* = 0 for

k # kmas- This is impossible as the relation (36) would contradict
the definition of theM W M algorithm MW M V¥ . Choosinge =
€1/2, we see from (34) and (35):

d ! F V.
L60) = —Lvvale) <0,

for a sufficiently large||®(¢)||r0. Now Theorem 2 follows from
(23) and (25) in the same way as Theorem 1.
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10.4 Proof of Theorem 5

We follow an idea in [19] to show that the algorithid M/ Ve
always calculates the same matching as the following maximu
weight matching algorithrd/W MY : MW MVe is defined as
the MW M algorithm with the functional weights chosen as in
(17). This maximum weight matching algorithm is stable bydlo
lary 1. The stability ofAM/ MY then follows from the fact that
MW MVYé andM MV< always calculate the same matching. This
is shown using an argument from [19]. In the first iteratidre t
MMV"¢ algorithm chooses the queue with the largest functional
weight of all G, (6" (n)), 1 < k < K, sayGa(¢*(n)). We recall
from (16) and (17) that at any time, there isg, ([¢®(n) + 1]) #

9 ([¢°(n) +1]) . Thus, theM W M Ys-E algorithm, which maxi-

mizes the weight of the whole matching, will also choose theug

g with the functional weightG.(¢“(n)) for packet transfer be-
cause

K
> eaplge ([sﬁk (n) + 1])
o
9(16% (m)+11)—1
exp(b)

IA

b=1

exp ([¢p*(n) +1]) =1
exp(l) — 1

exp ([¢”(n) +1])
Ga(¢"(n)).

Due to the crossbar structure of the switch, neither MigsVe

nor theM W M V¢ algorithm chooses any logical queue for packet
transfer that competes for a switch input and output withcte-

sen logical queue. Thus, these logical queues can be distéod

the rest of the proof. Applying the same arguments to the sub-
set of the remaining queues, one sees that both algorithotseh
the queue with the largest functional weight among the ramgi
queues. The successive application of this argument shuats t
both scheduling algorithms are indeed identical.

10.5 Proof of Theorem 6

In order to prove Theorem 6, we apply the techniques used for
the proofs of Theorems 1- 5. We divide the switches in the net-
work into h groups G, where h denotes the number of differ-
ent switching policies deployed throughout the considetd/ork
of IQ/CIOQ switches. Accordingly, we divide the departuezv
tor D(t) and the arrival rate vectol into h sub-vectors, i.e.,
D(t) = (Di(t))1<i<n @andW = (W;)1<i<n. In order to prove
stability according to def. 1, we have to show thatfog i < h,

Di(t)
. =
For eachi, the relation (37) can be shown by applying the respec-
tive proofs of the Theorems 1, 2, and 5 to the respective group

of switchesG, instead of applying them to the whole network of
switches.

<

Wi, w.p.1. (37)
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