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Abstract Let B(X) =|{N < X;N # p? + p} -+ p} + p} for any primes p;}[. It is proved in this
paper that there exists a positive constant § > 0 such that

E(X) s X195

which improves a result of prachar,
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1 Introduction and Statement of Results

After 1937 1. M. Vinogradov(! successfully proved the ternary Goldbach-conjecture, and its
method was applied to similar problems in additive prime number theory by several mathemati-
cians. Among them were Hual®l and Prachar. The latter established in 1952 [3] the following
result:

There exists a constant ¢ > 0 such that all but z(logx)™° even integers N smaller than «
are representable as

N = pi +p3 + p} + pt (1.1)

for prime numbers p;. We will improve on this result by establishing the following theorem:
Theorem There exists a positive number § such that all but < z*~% positive even integers
N < 2 are representable as in {1.1).
For the proof of the theorem we will apply a modification of the method of Montgomery
and Vaughan!t by Leung and Liu®®l and by Liu and Tsanglfl separately.

2 Notation and Structure of the Proof

We will choose our notation similar to that in [5]. By &k we will always denote an integer
k€ {2,3,4,5}, and by p we denote a prime number. ¢, ¢y, - are effective positive constants.
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¢ and ¢ are positive constants which take different values at different places. § shall denote
a small positive number, which will be specified later, and we denote by w(n} the number of
© prime divisors of n. Further put P = N% | T = pUVE G = NT=U/4 an4
1 1 1

i .
AL=§+§+E+E—1- (21)

It is well-known (see [7]) that there is at most one primitive character to a modulus g < T for
which the corresponding L-function has a zero in the region
€

o> 1=n(T), BI<T, where oT)= =t

(2.2)

for a small constant ¢, If there is such an exceptional character, it is real and we denote it by
X. The corresponding excoptional zero, denoted by 3, is real, simple and unique. In case b%
exists, the zero-free region in (2.2) is widened to (see [8])

C2 ec)
T)= ——log | ———m— } . 2.3
n(T) logT g((1mﬁ)logT) (23)
For the exceptionat module 7 it is further known that
C3 % C1
. B . .
712 10g? 7 = 1-fs logT (24)

We define for any & > N2 244 any y mod g with ¢ < P Sz, T) = Z 27~ where
T
Z denotes the summation over all zeros p == 8 + iy of L{s,x) lying inside the region:
Iy1=T
7] < T% <G £1=9{(T), and n(T) is defined in (2.3) or (2.2) according as 8 exists or not.
Let _ _
0= {{1 ~MlogT, if B exx_sts, (2.5)
1, otherwise.

Foilowing the proof of Lemma 2.1 in (6], by appealing to Gallagher’s density estimate ([8]) we
can prove the following lemma;

Lemma 2.1 Ifz > NY2 ihere exists an absolute constant ¢q such that for a sufficiently

small & Z Z Sy, T) <« Q' exp(—cy/6)), where Z " denotes the summation
45P 5 mod ¢ x mod 4
over all primtive characters y(modg).

Furthermore we define Af = ]5%‘ My = MY* Ny = N5 where £ =475 and we use

this to define S;(a) = Z A(n)e(n*a), Selx,a) = Z Aln)x(n)e(nfa), for ev-
Me<ng N, M SnZ Ny,
N;, - IVA. -
ery character (mod ¢) with ¢ < P, (o) = f e(z*e)dz, Ii(a) = f ¥ 1e(z*a)dw, and
M), My,

Ny, q . &
Tp(x, 0 = / e{z*a) Z #°~1d. Let for any character y mod g, Cilx,m) = Zx(l)e (%) :

Vi i< b=t

We now define the major arcs M and minor ares m as follows:

g d ¥ a 1 [#3 1 1 1 )
M = ZZ la,q), I{e,q) = [“—@,54-@}, m = {—— i+—é} \M,

¥
g<Pax=l q @
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where ¢
q q
{a.q)=1
Let
I(N) = > Alng) - Alns)
M Sng SN RE{2,- 5}
“§+"'+“g=“'
Then we find
142 5 5
I{N):/ e(-Na) [] Su(e)da = (f +f)e(—Na)H5‘k{a)da
q ku=2 M m k=2 (26)

L L (N) + Ip(N),

3  Simplification of I;(N)

For any « in I{a,q) we have o = % + 1,9 < FilC? in the usual way we find

Sy =67 ) Y. Cma)Selum, (3.1)
medq

where we have used that p < ¢ for all p and all ¢ under consideration. We will now follow the
arguments in [6] in order to simplify the contribution of the major arcs. The proofs will often
be omitted because the respective lemmas can be shown in the same way as Lemmas 3.1 to 3.4
in [6].

Lemma 3.1 For any real « and any x mod g with ¢ < T, we have .

Se(xm) = by In(e) — 631k (@) — Iu(x, @) + O((1 + gl )N L2TT),
where

L ifx = xo(mod q), - . _ {1, if x = %xo{mod g},
3 ¥ — .

L=logN, by, =
OB 4Y,  Oxo {O, otherwise. 0, otherwise.

Lemma 3.2 Let p= 8 +1iv,1/2 < 8 < 1. Then for any real n we have

min(Nf, g~ E+E-TME ), iy =0,
B 1t ; o
/Nk e(z*n)a’ "tz <« - _; . s 7]
1, NEME |12, | if 4k:Nk, <l €
M{ i, if mLk <l

Lemma 3.3 For'any real 9 we have

L(n) <€ min{Ng, |ni 7 ME*),  Tu(n) < min(WVE, g 5% a2 ),
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N, for any real 7,
NiEM, L}ni 12 for N7V <0l € *——gT
L(x,m) = k T knM’
MITE |, for -——*‘CT < |nl.
kM

Lemma 3.4  Form ¢ {1,2} we have

k(2m—1)

> 2in N R 1V (m([}-’_l)_l)
[m [e(m)P iy < W, / L™ dn <

__,___m,,?
ﬂ.[ {k=—-1)2m

Imk—k

/__00 IIL(\ Igm(iT] & —iﬁm

Proof The first three lommas are proved in the same way as Lemmas 3.1-3.3 in [6]. The
first estimate in Lemma 3.4 follows from Lemma 3.3 if we split up the integral in the foilowing

way:
fe)
/ JIL(U)]“de?<<f med??-i'/ i E_qmﬂ/f (i~ kzmd <
o ES N St

[nl<

L(Q'm-—lz
VI{L 1)2m -

The second estimate is proved in the same way, whereas for the proof of the third one we split
the integral in the following way:

[ inemrren < [ wimags [ N M |~y
—o0 lnlsNs* N,:k<|?1|$k—,_%;1:

. M“ e e 'Smk—k
In|~2™dn <

kwTI\fl' 3 SEUI WS?H’C s
Wk

We now simplify I,(N) as in {6]. Set Gi(a,¢,n) = Z Cy(X, ali{(x,n) and
med q -

Hy{a,a,m) = Cilxe. a)de(n) = 8,Cu(Xx0, a)x(n) — Gela, ¢, 1),
where §, = { 1, if g, } .

0, otherwise,
. _a ‘
For any o = gtne I{a,q), with the help of Lemma 3.1 we get {or {3.1) that

Sulay=¢7Ha) | Hila,q,n) + O Z (1+ N)|Cxla) N VEL2PY

x mod ¢

Arguing in the same way as in [7], Section 3, we obtain by using Lemmas 3.3 and 3.4 for a
sufficiently small §; that

. alN et >
() Z 7" Z (——i-) /mm e(—nN) H Hi(a, q,m) + O{N#P7H). (3.2)

{,'<P au: q =2
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4 Lemmas for the Treatment of Singular Series and Singular Integral

In this section we follow very closely the arguments in Section 5 in [5]. We define for any
characters y;(mod q),j € {2,3,4,5}

q —
Z(q, N, X2 X X X5)(= 2@, N = e ( il ) T1 o ), (41)

and

h=1 k=2
Using the definition of the Ci(---) we obtain
Y(g, N, X2, X8 X4s X5} = G > xe(n2)xa(ns)xa(na)xs(ns). (4.2)
' P
nZ+--nlmN(mode
We further sef ,
A(Q}N) = ¢_4(Q)Z{q>N3XU!XO)XU‘XO), ' (43)
and
N(Qa N} = Z 1‘
1&ny £q
(ng.q)=1
n§+---+ngEN(m0dq)
such that by (4.2) .
¥ (g, N, x0, X0, X0, X0) = gN(g, V). . (4.4)

The following Lemmas 4.1-4.4 can be proved in the same way as Lemmas 5.1 to 5.4 in [5]. So
we omit the proofs.
Lemma 4.1 N(q,N),Z{q,N),Y(q,N) and A(q, N) are multiplicative functions of q.
Lemma 4.2 For any positive integer ¢ we have ¢~4(q)Z(q, N) <« g~ 1+,
Lemma 4.3 Fork € {2,8,4,5)} let xx(mod p**) be primitive characters and o = max(og,
- as). For anyt > o, set Z(p*, N) = Z(p", N, szo,)(?]ng,x4xo,x5xO) and define Y (p*, N) in
the same way. a) Z{p', N} = 0 ift > I+max(1,a);b) > ¢7*(p*)Z(p", N) = ¢~*(@")Y (p", V),

V=
foranyn 2 «.

Lemma 4.4 a) A(p",N) = 0 for v > 2; b) p"g~4(p")N(p", N) = p¢~*(p)N(p, N), for

7zl
In view of Lemma 4.4 a) we define further

s(p, V) = 1+ 3 A%, Ny =1+ A(p, V). (4.5)

x>l

Remark Prachar has in {3] always taken A(4,7n) not necessarily to be equal to zero,
whereas our Lemma, 4.4 a) shows that this is wrong. Following Prachar’s arguments this can
also been seen by noting that Hua's lemma (see Prachar Lemma 4) can be sharpened in the
casep=2,2 fktoy=r+1




228 Acta Mathematica Sinica, New Series Vol.14 Na.2

Lemma 4.5 We hape H s(p,N) > log™0 p.
psP
Proof  We first note that by Lemma 13 in (3] s(p.m) # 0 for all even n. Then we obtain
by the definition of s(p,n) and the estimate
{Crlx, a)} < kplm- (4.6)
(for x(mod p) and (a,p) = 1; for the proof see (9], Satz 311) that
960
H s{p, N} > H (1 - ~——> > log™9%0 p,
pEP 960<p<P P

For the treatment of the singular integrals we need the following lemmas
Lemma 4.6  For any complez numbers p; with 0 < Re(p;) < 1,7 =2,--,5, we have

- T SR -
] e{—Nn) H (/M g;pj—le(_’z,‘kﬂ)dl‘)dﬂ: NME?/ H(Ni‘k)(p"_1)/’°$;’°_dw2da;3d$4,
o . VD ku=2

k=2
(4.7)
where
4 : _
25 =1~ Zﬁ:k (4.8)
k=12
and ,
D:{(352,"',335)IM/NS«“JQ,"',CESSl}. (49)
Fyrther there holds |
5 1=t 18¢
f .‘H .’L“kk‘ d$2d$3d$4 > Prver (410)
h=2
Proof (4.7} is shown in exactly the same way as (5.7) in [5]. For the proof of (4.10) we
4
note that for zs (4.9) is equivalent to 0 < ka <1~ P%. We define the region D; by
h=?2
- 1 <
D= {(wg,25,24) 1 PT < g, 29,24 < ?—)(1 - P,
and see that D; lies in D. So we get by 3;5"4/5 > 1 that
3 Yk 5 .
=k = 141 =
/ H :D;rd$2d$;;d$4 2/ HCLTd&‘,gdiid.’M > PT“§(§+3-+I) = Pl_;%{
D k=2 Dig=s
5  The Singular Series and the Singular Product
Lemina 5.1 For any R with1 < R < P and any integer + we haye '
2| I sem- T atgm)| < oriee (5.1)

N<z  pzR g P
(pory=rt {g,7m)=1
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which implies that for ell but < TR even imjégers N with 1 < N < x there holds

IT se¥)= 3 A(g.N)+O(R5). (5.2)
(pS)P (qS)P
p.r)=l q,ri=1

Proof Denoting the left-hand side in (5.1) by J we first have

J<| 3 Al +] Y Al N)| = TN, R) + To(N, B), (5.9)
R<gq<V gzV
€L ., LY

with V = exp (EIOE) D = {g 1 ule) # 0.(07) = Lolg = p < P}, where the

condition u(q) # 0 is due to Lemma 4.4 a). Lemma 4.3 in {10] says that for {(m.,p) = 1,

P . k [
>oe (ﬂ) = > x(m)r(x), where Af = {x(mod p} : x" = X0, X # Xo} and
=l xGA';

ca.rdA;' =(k,p—-1)—-1 (5.4)

So we have for {p, N} =1

p1
-0t = Yo (20 T ( S A0 - 1)

h=1 k=2 xEA‘;
4 p~1
—_— —hN —hN
Sy Y Y e 3 e (T ) e (=)
ELORESG T e L ey M
. ~hN
ST Y Y ) R -V e (o)
B ey g ALt
= T =N +C),
XEB, xFx0
‘ (5.5)
where by |7(x)} < p'/? and (5.4) there holds
cardB, < 4 x 5! =480, |f(x)] < 480p%/2, |C(p)] < 480p® + 1. " (5.6)
Taking note of Lemmas 4.1 and 4.4 a) we use (5.5) to define for ¢ € D
Alg,N) =) Ai(m, N)As(g/m,N), (5.7)
mlg .
where
1 .
—— > x(-Nf{x), ifN)=1,
Ai(p, N) = { (p—1) x €8, x#%0
Cip) .
JINY =1 .
As(p, N) = { PESTANARE Ailg, Ny = [T Ao, V)i € (1,2,
Alp,N), ifpN. pla
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and an empty product is equal to 1. By (5.3) and (5.7) we have

TiN.R) < Y |As(m, )| > |Ay(d, V)|

RUY3cmev R/m<d<V/m,(d,m)=1

mEDy JED,
+ 2 [Aa(m,N)| > Ad,N) (5.8)
m<Rrl/3 R/m<d<V/m, (d,m)=1

meE Dy dE€EDr

:= F|(N, R) + F5(N, R).

2
We deduce from (4.6) that |A(p, V)| < (;—2_0%5, and so we get together with (5.6) that

Fi(N,R) <R3 3" m|dy(m,N)| Y |As(d, N)|

et i
SRIP T A +plAalo,N)) [ (14 Aulp, N)))
p<P PLP
. L = (5.9)
< R-U/3 (1 s E) cw(N) (1 4 i) il 1 e i
;g’ P p].;[) p3/2 .(,_\ ; N
 (pN)=1 e e N
< R~1/3¢#(M)(log P)e. r‘-\‘ A Q\é
Now we get by the definition of Ay (d,N) : |
> Ay(d,N) = 3 > “s00x(=N)
R,'m<d<d|2,lpn:.{d.m)=1 . R/m<d<d‘;;;)n:.(d.m)=i xmodd
where
480;95/2 . .
900 < H (13——1)4’ if y= IF_IXP with x, € B(p) Vp|d,
rlg
0, otherwise.
By (5.6) we have for any positive number a and any d € D, :
. . " 480 x 16)* _ (c*)«(®)
> latl* < (480 I & < | 5.10
xmodd ;];I—g pSa/2 dloit ( o
Further we write
H
(R/m, VimlE | J[Q-1,Qs), (5.11)
T
~

]
ith - T . ) 7-log P :
with Qo = R/m,Q; = 27/? j = S SflaggEEE' Then for a fixed j we get by (5.10),

Vo
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(5.11) and Lemma 6.5 in [5]: s
> [ S0 *g(x)x(—N)|
N<a Q7-1<d2Q, ymodd
EEDr
. (25-1)/25
< (@ + Q) )at Mloglafe)) DRI | KT BT gl
Q5-1<dLQ; ymodd
(@ {25-1)/23 '
. 2 . c¥ . . Ry
< (log(aie)) " 1/% ( noy W) < allog(a7e)) /MY
Qj1<dLqQ;
(5.12)
From (5.11) and {5.12) we get
% . 2
> > Afd, )| € 2Q7 % + 27/ (log a2/, (5.13)
N<e R/m<daV/m,(dm)=1 J=2
- deD
For the sum in (5.13) we obtain for a sufficiently small §;
H H T
. . lOgP logP og log %
)< 1) logz)//? < 2 3 1 P, 5.14
>0+ 5 30+ Dlogap” s ol (3 ioge) " < (514)
So we find by (5.13), (5. 14} the definition of Qg and m < RY/3 for a sufficiently small & that:
Z| > Al(d,N){ & o(R™13 4 P37 1/8) « oR™ e T (5 15)

Ny R/md<V/im(d,m)=1
- dED

For the final estimate of Fy(N,r) we note

1 > jAem i< 1] (1+ (;Si;)) II '(14-%) < (log P)°. (5.16)

mg.rez;/f‘ p<P

j \ . For To(N, R} we get with v = 1%%%% :

BB <Y (£) (aemi v TT @+p14m ).
.

§€D, 2<p< P

By V7Y =271/2 and p* < (logz)!/?, we obtain for a sufficiently small §

1/2
Ty (N z M2 H ( wc(logm ) & :v:'“m(ic}gP)C“"g”“)1/2 & g e,

(5.17)
ps P

So we obtain from (5.3), (5.8}, (5.9), (5.15), (5.16) and (5.17): J < xR™1/3+¢,

Lemma 5.2 Let x;{modr;),j € {1,2,3} denote primitive characters and r be the least
common multiple of the rj. We define in the following Z(g, N
characters x2x0, X3X0, X4X0, X5Xo-

> ¢7HZ{a N) < P

9<P,rig

) and Y(r, N) separately with the
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b} Z Z ¢o"Hq)Z(q, N) - ¢~ (r)Y (r, N) H s{p)N)’ < gP1/3Fe,

‘Nz qgPriq PpEPpr)=1
here 1) implies that

Z O ) Z(q, Ny = ¢~ ()Y (r, N} H s{p, N) + O( P16y, (5.18}

gL Prig pEf(p.ri=1
Jor all but < xP Y04 pyep integers N <z,
Proof a) We find by Lemmas 4.1, 4.2, 4.3 a) and {4.3}:

b Tz m| SeOzem S )

e Prlg 1S P/r(qr)=1
& polte Z A (g, N)| < vt pe

< P/r

b) We see by Lemmas 4.1,.4.2 and 4.3 that

>

S @z N - o7y ] s(p,N)!

N<z l g<Prig PEPpr=1
IP U R R CE LTI Y
N<x qSP/r,(q,r}:L PSP!(PvT\}zl
< ""_HEZ Z Alq, N) ~ H S(P,N)l-
n<x IE P/ r(g,r)=1 PLP(p,r)=1

Hr < P, we derive the lemma from (5.1). In the other case we first note that by (4.6)
ls(p)] <1+ 960/p. Using this and arguing again as in the first case we get

e T semlsetwzem T sew

pEPp,ri=l p<Pp,r)=1

5.19
& potte H (1+9—6~Q) & prite 519
PP (pr)=1 P

Then the lemma follows trivially from {5.19) and part a).

6  The Major Arcs

The treatment of the major arcs is very similar to the procedure in [5]. So we will only
explain briefly how the proofs are derived; for more details refer to [5]. We know from the

w
definition of Hg(a,q,7) that H Hy(a,¢.n} is a sum of 3! terms which can be divided into three
groups: k=2

T, : the term H Cr(xo, )L (n),

h=2
T3 : the 65 terms each of which has at least one G(a,q,n) as factor,
T3 ¢ the remaining 15 terms.
We further write for i = 1, 2,3,

4 oo
M; = Z ¢ {q) Z e (%) / e{~Nn){sum of the terms in T }edn,

q&<F a=1 R
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from which we deduce by (3.2) that '

i

Li(NY = My + My + M # O(N#PY). (6.1)
We set 5
* 1—k
Py = j;,r—rf [] 2" dwadaadas, (6.2)
b g
and we see by (4.9):
Py & NP, (6.3)
pN(p, V)

We further easily derive from (4.5) that s(p, V) = o1 and so we get by Lemmas 4.1 and

4.4 h):
| [ stp, ) = ™ (AN V). ¢ (64)

plF

We will now give some lemmas for the contribution of the M; to I} (N). We first have

Lemma 6.1 .
M, =Py [] slo, V) + O(# P+ 5), (6.5)
p<P '

 for all but < x P even integers N < .

Proof This is proved in exactly the same way as Lemma 7.1 in {5] by using Lemma 4.6,
(5.2), (6.2} and {6.3).

Making use of Lemmas 4.6, 5.2 a} and (6.3) for part a), and Lemma 4.6}, (4.4}, (5.18), (6.3)
and (6.4) for part b}, we get similarly to the proofs of Lemmas 7.2 and 7.3 in {5}

Lemma 6.2 a) My < N47=1 P54 b) My + My > 0P J[ s(p, V) + OWVHPT ),
p<P

for all but « xP~Y8*< cven integers N < .

For M,, by using Lemmas 2.1, 4.6, 5.2 b) and (6.3} we obtain in the same way as Lemma
7.4 in {5):

Lemma 6.3 There ezists an absolute constant cg such that

My < O exp(—ca/8)Po [] slp. N) + O(NFPF 1),
pgP

for all but < xP7Y%%¢ cyen integers N <z

From these three lemmas we derive for a sufficiently small é; a lower bound for the contri-
Lution of the major arcs by distinguishing three cases:

a) ¥ does not exist. By applying Lemmas 4.5, 6.1, 6.3 and {4.10) to (6.1) we obtain

L(N) > %7’0 T ste. ) + ONHPT ) > NEPEB, (6.6)
p<P

for all but < xP~1/%*+ gven integers N < x.
b) 7 exists and # > P¢/2, We derive from Lemmas 4.5, 6.1, 6.2 a), 6.3 and (4.10) that

L(V) > %730 T] stp. V) + O P64y > Nmp=ere, (6.7)
pEF
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for all but < zP~1/6+¢ gyen integers N < z. .
¢) ¥ exists and ¥ < P%/%, From Lemmas 6.2 b) and 6.3 we gat

L(N) 2 56 Po I st V) + o p%+i)
p<P

for all but « zP~/0+¢ even integers N < .
From (2:4) and (2.5) we get @ = (1~ B)logT > (c3log T)(F/2log )1 3 P~/ jog™! T,
from which we deduce by Lemma 4.5 and (4.10) that

L(N) > N#p=9/8, (6.8)

for all but <« xP~1/6+¢ even integers N < g.

7 The Min_gr Arcs

: . 1
We quote Lemma 3 in 3], which satates together with {2.1) that f 1S2() 83 () Safa)|* <
0

N?*%: and we know from Theorem 1 in [11] that Ss(a) < NY/5+¢P~4 for o € m. Combining
these two results and using Bessel’s inequality we obtain

> RWIP < [ 15:(@)S5(@)5u(e)S5(@)P

#/2E<N<x
| S maxiSs(@)l” f |52(a)S5(@) S (@) < a2+ P,
m .

from which we derive that
L(N) g N#p~3¢ (7.1)

for all but <« zP~¢ even integers 2/2 < N < z. We can now derive the theorem from (2.6),
(6.6}, (6.7), (6.8) and (7.1), by splitting the interval {1, z] into intervals of the type it, 2t].
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